• Title/Summary/Keyword: $Na_3AlF_6$

Search Result 71, Processing Time 0.025 seconds

Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), │(NH4)60Na11│[Si121Al71O384]-FAU

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Kim, Young-Hun;Wang, Lian-Zhou;Lu, Gao-Qing;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.543-550
    • /
    • 2009
  • The single-crystal structure of largely ammonium-exchanged zeolite Y dehydrated at room temperature (293 K) and 1 ${\times}\;10^{-6}$ Torr. has been determined using synchrotron X-radiation in the cubic space group $Fd\overline{3}m\;(a=24.9639(2)\AA)$ at 294 K. The structure was refined to the final error index $R_1$ = 0.0429 with 926 reflections where $F_o>4\sigma(F_o)$; the composition (best integers) was identified as |$(NH_4)_{60}Na_{11}$|[$Si_{121}Al_{71}O_{384}$]-FAU. The 11 $Na^{+}$ ions per unit cell were found at three different crystallographic sites and 60 ${NH_4}^{+}$ ions were distributed over three sites. The 3 $Na^{+}$ ions were located at site I, the center of the hexagonal prism ($Na-O\;=\;2.842(5)\;\AA\;and\;O-Na-O\;=\;85.98(12)^{\circ}$). The 4 $Na^{+}$ and 22 ${NH_4}^{+}$ ions were found at site I' in the sodalite cavity opposite the double 6-rings, respectively ($Na-O\;=\;2.53(13)\;\AA,\;O-Na-O\;=\;99.9(7)^{\circ},\;N-O\;=\;2.762(11)\;\AA,\;and\;O-N-O =\;89.1(5)^{\circ}$). About 4 $Na^{+}$ ions occupied site II ($(Na-O\;=\;2.40(4)\;\AA\;and\;O-Na-O\;=\;108.9(3)^{\circ}$) and 29 ${NH_4}^{+}$ ions occupy site II ($N-O\;=\;2.824(9)\;\AA\;and\;O-N-O\;=\;87.3(3)^{\circ}$) opposite to the single 6-rings in the supercage. The remaining 9 ${NH_4}^{+}$ ions were distributed over site III' ($N-O\;=\;2.55(3),\;2.725(13)\;\AA\;and\;O-N-O\;=\;94.1(13),\;62.16(15),\;155.7(14)^{\circ}$).

Synthesis and Characterization of the Large Single Crystal of Fully K+-exchanged Zeolite X (FAU), |K80|[Si112Al80O384]-FAU (Si/Al=1.41)

  • Lim, Woo-Taik;Jeong, Gyo-Cheol;Park, Chang-Kun;Park, Jong-Sam;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Large colorless single crystals of sodium zeolite X, stoichiometry |Na80 |[Si112Al80O384]-FAU, with diameters up to 200 μm and Si/Al = 1.41 have been synthesized from gels with the composition of 2.40SiO2 : 2.00NaAlO2 : 7.52NaOH : 454H2O : 5.00TEA. One of these, a colorless octahedron about 200 μm in cross-section has been treated with aqueous 0.1 M KNO3 for the preparation of K+-exchanged zeolite X. The crystal structure of |K80|[Si112Al80O384]-FAU per unit cell, a = 24.838(4) A, dehydrated at 673 K and 1 × 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 294 K. The structure was refined using all intensities to the final error indices (using only the 707 reflections for which Fo > 4σ (Fo)) R1 = 0.075 (based on F) and R2 = 0.236 (based on F2). About 80 K+ ions per unit cell are found at an unusually large number of crystallographically distinct positions, eight. Eleven K+ ions are at the centers of double 6-rings (D6Rs, site I; K-O = 2.492(6) A and O-K-O (octahedral) = 88.45(22)o and 91.55(22)o). Site-I' position (in the sodalite cavities opposite D6Rs) is occupied by five K+ ions per unit cell; these K+ ions are recessed 1.92 A into the sodalite cavities from their 3-oxygen planes (K-O = 2.820(19) A, and O-K-O = 78.6(6)o). Twety-three K+ ions are found at three nonequivalent site II (in the supercage) with occupancies of 5, 9, and 9 ions; these K+ ions are recessed 0.43 A, 0.75 A, and 1.55 A, respectively, into the supercage from the three oxygens to which it is bound (K-O = 2.36(13) A, 2.45(13) A, and 2.710(13) A, O-K-O = 116.5(20)o, 110.1(17)o, and 90.4(6)o, respectively). The remaining sixteen, thirteen, and twelve K+ ions occupy three sites III' near triple 4-rings in the supercage (K-O = 2.64(3) A, 2.94(3) A, 2.73(5) A, 2.96(6) A, 3.06(4) A, and 3.08(3) A).

Characteristics of Cryolite as an Electrolyte for Reduction of Nd$_2$O$_3$ (네오디뮴 산화물의 전해환원시 전해질로서 빙정석의 특성)

  • 남상욱;백영현
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.2
    • /
    • pp.82-86
    • /
    • 1993
  • An attempt was made to reduce directly Nd2O3 in a cryolited based fluoride bath. Neodymium metal was electrodeposited on the iron cathode to produce the Fe-Nd eutectic alloy in a liquid state at 90$0^{\circ}C$. Graphite was adopted for the anode and pure iron for the cathode. Electrolyte was composed of Na3AlF6 50wt.%. AlF3 34wt.% and Nd2O3 16wt.%. Analysis of typical alloy product showed Al 63.4wt.% Fe 26.9wt.% and Nd 7.0 wt.% The enrichment of neodymium in the alloy couldn't be obtained because aluminum codeposited with ne-odydmium. Experimental results proved that the cryolited based electrolyte was unstable for the electrolysis of rare earth oxides even though their prominent solubilities.

  • PDF

Characterizations of Ti-Al-V-N Films Deposited by DC and RF Reactive Magnetron Sputtering (직류 및 고주파 마그네트론 스퍼터링법으로 증착한 Ti-Al-V-N 박막의 특성)

  • Sohn, Yong-Un;Chung, In-Wha;Lee, Young-Ki
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.398-404
    • /
    • 2000
  • The Ti-Al-V-N films have been deposited on various substrates by d.c and r.f reactive magnetron sputtering from a Ti-6Al-4V alloy target in mixed $Ar-N_2$ discharges. The films were investigated by means of XRD, AES, SEM/EDX, microhardness, TG and scratch test. The XRD and SEM results indicated that the films were of single B1 NaCl phase having dense columnar structure with the (111) preferred orientation. The composition of Ti-Al-V-N film was the Ti-7.1Al-4.3V-N(wt%) films. Adhesion and microhardness of Ti-Al-V-N films deposited by r.f magnetron sputtering method were better than those deposited by d.c magnetron sputtering method. The anti-oxidation properties of Ti-Al-V-N films were also superior to that of Ti-N film deposited by the same deposition conditions.

  • PDF

CHEMICAL DEGRADATION OF VARIOUS COMPOMERS IN NaOH (콤포머의 NaOH 용액 내에서의 화학적 분해)

  • Park, Mi-Ran;Choi, Nam-Ki;Lee, Young-Jun;Kim, Seon-Mi;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.144-152
    • /
    • 2004
  • The aim of this study was to evaluate the resistance to degradation of three commercial compomers in an alkaline solution. Dyract(Dentsply), Elan(Kerr) and F-2000(3M) polyacid modified resin composites(compomers) were used in this study. The resistance to degradation was evaluated on the basis of mass loss(%), degradation $depth({\mu}m)$ and Si, Al, Ba loss(ppm). The results were as follows : 1. The mass loss of each brand was $1.42%{\sim}2.14%$ and there was no statistically significant difference of mass loss among Dyract, F2000 and Elan. 2. The degradation layer depth of each brand was $182.92{\sim}227.7{\mu}m$ and there was no statistically significant difference of degradation layer depth among Dyract, F2000 and Elan. 3. There was statistically significant differences in Si-loss and Al-loss among three compomers (p<0.05). Si loss was the highest value in Dyract and Al loss was the highest value in F2000. 4. There was statistically significant correlation between mass loss and degradation layer depth (r=0.60, p<0.05). 5. In SEM finding, there was some destruction of compomer matrix-filler interface in post-exposure specimen to NaOH solution. As the matrix decreased, the filler particles distinguished and the periphery of the filler particles appeared whitish color due to degradation.

  • PDF

A Study on the Metal Ion Components of Airborn Particulates during Yellow Sand Phenomena in Seoul (황사현상시 서울지역 대기분진의 성분에 관한 연구)

  • 신찬기;박태술;김윤신
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.47-62
    • /
    • 1991
  • Yellow Sand Phenomena was observed from April 8 th to 10 th in 1990. During this period particle was collected to investigate the chacteristics of chemical composition of particulate by High Volume Air Sampler and Andersen Air Sa~npler in Seoul. During this period the particle concentration was 350 yg/$m^3$ and the anions, cations, and metal concentrations were increased and the orders of these were $S0_4\;^{-2}>N0_3\;^->Cl^->F^-, Na^+>Ca^{+2}>NH_4\;^+>Mg^{2+}>K^+$, and Fe>Al>Si>Zn>Pb respectively. The principal source of Yellow Sand were identified soil and sea salt. Mn used by the trace element of soil, the persentage of contribution from soil was calculated to be about 81.3% for the particle increased by Yellow Sand Phenomena. Also the principal chemical compounds of particle were estimate metals(Fe, Al, Si, Zn) oxides, $CaSO_4, NaSO_4, MgSO_4, NaC1, MgCl_2$ and $(NH_4)_2SO_4$.

  • PDF

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit (운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

Crystal Habits of Corundum Single Crystals Grown in Cryolite Flux (빙정식 융제로 성장한 Corundum 단결정의 결정형)

  • 장진욱;이태근;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.463-470
    • /
    • 1992
  • Corundum single crystals were grown in cryolite flux with the composition of Na3AlF6:Al2O3=80:20 wt%. This mixture was melted at 115$0^{\circ}C$, followed by slow cooling at a rate of 2$^{\circ}C$/hr to 96$0^{\circ}C$. And by adding of La2O3 to the flux, the change of crystal forms were observed. Crystal forms of corundum grown in cryolite flux had the habits of hexagonal plate which consist of well developed {0001} face and small {101} face. As La2O3 was added and its content was increased, {223} and {110} faces were developed, and crystal habits of equidimensional forms changed into hexagonal prism form. In a charge of 8 mole% B2O3, Al2O3:La2O3=15:1, transparent corundum single crystals of equent form were grown. As the content of B2O3 was increased, twineed crystals which have twin law of 2-fold parallel to [0001], and composition plane of (110) were grown.

  • PDF

Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy (나노튜브 $TiO_2$ 층 생성 후 전석회화 처리한 Ti-6Al-7Nb 합금의 생체활성도)

  • Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • Purpose: The purpose of this study was to investigate the bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy. Materials and methods: Anodic oxidation was carried out at a potential of 20 V and current density of 20 mA/$cm^2$ for 1 hour. The glycerol solution containing 1 wt% $NH_4F$ and 20 wt% deionized water was used as an electrolyte. Precalcification treatment was obtained by soaking in $Na_2HPO_4$ solution at $80^{\circ}C$ for 30 minutes followed by soaking in saturated $Ca(OH)_2$ solution at $100^{\circ}C$ for 30 minutes, followed by heat treatment at $500^{\circ}C$ for 2 hours. To evaluate the activity of precalcified nanotubular $TiO_2$ layer, specimens were immersed in a simulated body fluid with pH 7.4 at $36.5^{\circ}C$ for 10 days. Results: 1. Nanotubular $TiO_2$ layer showed the highly ordered dense structure by interposing small diameter nanotubes between large ones, the shape of nanotubes was enlarged as going down. 2. The mean length of nanotubes was $517.0{\pm}23.2\;nm$ innm glycerol solution containing 1 wt% $NH_4F$ and 20 wt% $H_2O$ at 20 V for 1 hour. 3. The bioactivity of Ti-6Al-7Nb alloy was improved with formation of nanotubular $TiO_2$ layer and precalcification treatment in $80^{\circ}C$ 0.5 M $Na_2HPO_4$ and saturated $100^{\circ}C$ $Ca(OH)_2$ solution. Conclusion: Bioactivity of precalcified nanotubular $TiO_2$ layer on Ti-6Al-7Nb alloy was improved.

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite (벤젠이 흡착된 Cd2+-Y(FAU) 제올라이트의 합성 및 구조연구)

  • Moon, Dae Jun;Suh, Jeong-Min;Park, Jong Sam;Choi, Sik Young;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2017
  • Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.