DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of White Mica and Chlorite from Laminated Quartz Vein of Unsan Au Deposit

운산 금 광상의 엽리상 석영맥에서 산출되는 백색운모와 녹니석의 산상 및 화학조성

  • Yoo, Bong Chul (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 DMR융합연구단)
  • Received : 2021.02.18
  • Accepted : 2021.02.26
  • Published : 2021.03.31

Abstract

The Unsang gold deposit has been one of the three largest deposits (Daeyudong, Kwangyang) in Korea. The geology of this deposit consists of series of host rocks including Precambrian metasedimentary rock and Jurassic Porphyritic granite. The deposit consists of Au-bearing quartz veins which filled fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it is an orogenic-type deposit. Quartz veins are classified as 1) galena-quartz vein type, 2) pyrrhotite-quartz vein type, 3) pyrite-quartz vein type, 4) pegmatic quartz vein type, 5) muscovite-quartz vein type and 6) simple quartz vein type based on mineral assembles. The studied quartz vein is pyrite-quartz vein type which occurs as sericitization, chloritization and silicification. The white mica from stylolitic seams of laminated quartz vein occurs as fine or medium aggregate associated with white quartz, pyrite, chlorite, rutile, monazite, apatite, K-feldspar, zircon and calcite. The structural formular of white mica from laminated quartz vein is (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00. It indicated that white mica of laminated quartz vein has less K, Na and Ca, and more Si than theoretical dioctahedral micas. Compositional variations in white mica from laminated quartz vein are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution. The structural formular of chlorite from laminated quartz vein is((Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8. It indicated that chlorite of laminated quartz vein has more Si than theoretical chlorite. Compositional variations in chlorite from laminated quartz vein are caused by phengitic or Tschermark substitution (Al3+,VI+Al3+,IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV) and octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. Therefore, laminated quartz vein and alteration minerals of the Unsan Au deposit was formed during ductile shear stage of orogeny.

운산 금 광상은 한반도의 3대(대유동 광상, 광양 광상) 금 광상중의 하나였다. 이 광상의 지질은 선캠브리아기의 변성퇴적암류와 중생대의 반상화강암으로 구성된다. 이 광상은 선캠브리아기의 변성퇴적암류와 중생대의 반상화강암내에 발달된 단층대를 따라 충진한 함 금 석영맥 광상으로 조산형 금 광상에 해당된다. 이 광상의 석영맥은 광물조합에 따라 1) 방연석-석영맥형, 2) 자류철석-석영맥형, 3) 황철석-석영맥형, 4) 페크마틱 석영맥형, 5) 백운모-석영맥형 및 6) 단순석영맥형으로 분류된다. 연구된 석영맥은 황철석-석영맥형이며 견운모화작용, 녹니석화작용 및 규화작용이 관찰된다. 백색운모는 유색대에서 백색석영, 황철석, 녹니석, 금홍석, 모나자이트, 저어콘, 인회석, 칼리장석 및 방해석 등과 함께 세립질 내지 중립질 입단으로 산출된다. 이 백색운모의 화학조성은 (K0.98-0.86Na0.02-0.00Ca0.01-0.00Ba0.01-0.00 Sr0.00)1.00-0.88(Al1.70-1.57Mg0.22-0.09Fe0.23-0.10Mn0.00Ti0.04-0.02Cr0.01-0.00V0.00Ni0.00)2.06-1.95 (Si3.38-3.17Al0.83-0.62)4.00O10(OH2.00-1.91F0.09-0.00)2.00로써 이론적인 이중팔면체형 운모류 값보다 Si가 높고 K, Na, Ca는 낮다. 이 광상의 엽리상 석영맥에서 산출되는 백색운모의 화학조성 변화는 팬자이틱(phengitic) 또는 Tschermark 치환[(Al3+)VI+(Al3+)IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV] 및 직접적인 (Fe3+)VI <-> (Al3+)VI 치환에 의해 일어났음을 알 수 있다. 엽리상 석영맥에서 산출되는 녹니석의 화학조성은 (Mg1.11-0.80Fe3.69-3.14Mn0.01-0.00Zn0.01-0.00K0.07-0.01Na0.01-0.00Ca0.04-0.01Al1.66-1.09)5.75-5.69 (Si3.49-2.96Al1.04-0.51)4.00O10 (OH)8로써 이론적인 녹니석보다 Si 함량이 높다. 이 녹니석의 화학조성 변화는 팬자이틱(phengitic) 또는 Tschermark 치환(Al3+,VI+Al3+,IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV) 및 팔면체적 Fe2+ <-> Mg2+ (Mn2+) 치환에 의해 일어났음을 알 수 있다. 따라서 운산 광상의 엽리상 석영맥 및 변질광물은 조산운동 시 연성전단(ductile shear) 시기에 형성되었음을 알 수 있다.

Keywords

References

  1. Ayati, F., Yavuz, F., Noghreyan, M., Haroni, H.A. and Yavuz, R., 2008, Chemical characteristics and composition of hydrothermal biotite from the Dalli porphyry copper prospect, Arak, central province of Iran. Mineralogy and Petrology, 94, 107-122. https://doi.org/10.1007/s00710-008-0006-5
  2. Christie, A.B. and Brathwaite, R.L., 2003, Hydrothermal alteration in metasedimentary rock-hosted orogenic gold deposits, Reefton goldfield, South Island, New Zealand. Mineralium Deposita, 38, 87-107. https://doi.org/10.1007/s00126-002-0280-9
  3. Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master thesis, Oregon State University, Oregon, USA, 121p.
  4. Craw, D. and MacKenzie, D., 2016, Macraes orogenic gold deposit (New Zealand) Origin and development of a world class gold mine. Springer, 127p.
  5. Deer, W.A., Howie, R.A. and Zussman, J., 2003, Rockforming minerals, sheet silicates: Micas, 2, 308p.
  6. Deer, W.A., Howie, R.A. and Zussman, J., 2009, RockForming Minerals, Layered Silicates Excluding Micas and Clay Minerals, 2nd edition, 81-156.
  7. Deer, W.A., Howie, R.A. and Zussman, J., 2013, An introduction to the rock-forming minerals, 3rd edition. Stevenage, Berforts Information Press, 498p.
  8. Dehnavi, A.S., McFarlane, C.R.M., Lentz, D.R., McClenaghan, S.H. and Walker, J.A., 2019, Chlorite-white mica pairs' composition as a micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst mining camp, Canada. Minerals, 9,125. https://doi.org/10.3390/min9020125
  9. Foster, M.D., 1962, Interpretation of the composition and a classification of the chlorites. Geological Survey Professional Paper, 414-A, 1-33.
  10. Gaillard, N., Williams-Jones, A.E., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauziere, N., Guilmette, C. and Linnen, R.L., 2018, Mica composition as a vector to gold mineralization: Deciphering hydrothermal and metamorphic effects in the Malartic district, Quebec. Ore Geology Reviews, 95, 789-820. https://doi.org/10.1016/j.oregeorev.2018.02.009
  11. Goldfarb, R.J., Taylor, R.D., Collins, G.S., Goryachev, N.A. and Orlandini, O.F., 2014, Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Research, 25, 48-102. https://doi.org/10.1016/j.gr.2013.03.002
  12. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F., 1998, Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7-27. https://doi.org/10.1016/S0169-1368(97)00012-7
  13. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K., 1978, Summary and critique of the thermodynamic properties of rock forming minerals. American Journalof Science, 278-A, 229p.
  14. Hori, S., 1942, Geology and ore deposits of the eastern Unsan mining district, Korea. The Journal of the Geological Society of Japan, 49, 1-29. https://doi.org/10.5575/geosoc.49.1
  15. Ishihara, S., 2006, North Korea, a country of gold? Gold mineralizations in the Korean Peninsular and their basement setting. Chishitsu News, 617, 8-23.
  16. Ishihara, S., Jin, M.S. and Sasaki, A., 2000, Source diversity of ore sulfur from Mesozoic-Cenozoic mineral deposits in the Korean Peninsula region. Resource Geology, 50, 203-212. https://doi.org/10.1111/j.1751-3928.2000.tb00070.x
  17. Jimenez, T.R.A., 2011, Variation in hydrothermal muscovite and chlorite composition in the Highland valley porphyry Cu-Mo district, British Columbia, Canada. Master thesis, University of British Columbia, Vancouver, Canada, 233p.
  18. Kinosaki, Y., 1933, Geological Atlas of Chosen, No. 15: Hokuchin and Gyukenchin Sheets, 25p.
  19. Koh, S.M., Lee, G.J., You, B.W., Kim, N.H. and Lee, B.H., 2019, Geology and mineralization of the Northern Korean Peninsula. Korea Institute of Geoscience and Mineral Resources, 322p.
  20. Lee, K.H., Lee, J.I., Yu, C.C., Jung, K.R., Cho, D.H., Lee, K.K., Kwon, H.H. and Cho, W.J., 2012, Korea Mining Centennial History. Korea Mining Association, 840p.
  21. Neall, F.B. and Phillips, G.N., 1987, Fluid-wallrock interaction in an Archean hydrothermal gold deposit: A thermodynamic model for the Hunt mine, Kambalda. Economic Geology, 82, 1679-1694. https://doi.org/10.2113/gsecongeo.82.7.1679
  22. Pearce, M.A., White, A.J.R., Fisher, L.A., Hough, R.M. and Cleverley, J.S., 2015, Gold deposition caused by carbonation of biotite during late-stage fluid flow. Lithos, 239, 114-127. https://doi.org/10.1016/j.lithos.2015.10.010
  23. Plissart, G., Femenias, O., Maruntiu, M., Diot, H. and Demaiffe, D., 2009, Mineralogy and geothermometry of gabbro-derived listvenites in the Tisovita-Iuti ophiolite, southwestern Romania. Canadian Mineralogist, 47, 81-105. https://doi.org/10.3749/canmin.47.1.81
  24. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1999, Nomenclature of the micas. Mineralogical Magazine, 63, 267-279. https://doi.org/10.1180/002646199548385
  25. Shikazono, N. and Shimizu, M., 1986, Compositional variations in Au-Ag series minerals from some gold deposits in the Korean Peninsula. Mining Geology, 36, 545-553.
  26. Takashima, K. and Kishimoto, F., 1987, Gold deposits of Unsan and its vicinity - A sketch of the Democratic People's Republic of Korea. Chishitsu News, 398, 28-41 (in Japanese).
  27. Tappert, M.C., Rivard, B., Giles, D., Tappert, R. and Mauger, A., 2013, The mineral chemistry, near-infrared, and midinfrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38. https://doi.org/10.1016/j.oregeorev.2012.12.006
  28. Tindle, A.G. and Webb, P.C., 1990, Estimation of lithium contents in trioctahedral micas using microprobe data : application to micas from granittic rocks. European Journal of Mineralogy, 2, 595-610. https://doi.org/10.1127/ejm/2/5/0595
  29. Tischendorf, G., Gottesmann, B., Forster, H.J. and Trumbull, R.B., 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
  30. Uribe-Mogollon, C. and Maher, K., 2018, White mica geochemistry of the Copper Cliff porphyry Cu deposit: Insights from a vectoring tool applied to exploration. Economic Geology, 113, 1269-1295. https://doi.org/10.5382/econgeo.2018.4591
  31. Wallace, C.J., 2016, Latite dikes, phyllic alteration and geochemical variations of micas at the copper flat hydrothermal system, Hillsboro, Sierra county, New Mexico, USA. Master thesis, New Mexico Institute of Mining and Technology, New Mexico, USA, 107p.
  32. Walshe, J.L, 1986, A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal system. Economic Geology, 81, 687-703. https://doi.org/10.2113/gsecongeo.81.3.681
  33. Walshe, J.L. and Solomon, M., 1981, An investigation into the environment of formation of the volcanichosted Mt. Lyell copper deposits, using geology, mineralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, 76, 246-284. https://doi.org/10.2113/gsecongeo.76.2.246
  34. Wang, R., Cudahy, T., Laukamp, C., Walshe, J.L., Bath, A., Mei, Y., Young, C., Roache, T.J., Jenkins, A., Roberts, M., Barker, A. and Laird, J., 2017, White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle gold deposits, Western Australia. Economic Geology, 112, 1153-1176. https://doi.org/10.5382/econgeo.2017.4505
  35. Yavuz, F., Kumral, M., Karakaya, N., Karakaya, M.C. and Yildirim, D.K., 2015, A windows program for chlorite calculation and classification. Computers & Geosciences, 81, 101-113. https://doi.org/10.1016/j.cageo.2015.04.011
  36. Yoo, B.C., 2019, White mica and chemical composition of Samdeok Mo deposit, Republic of Korea. Journal of the Mineralogical Society of Korea, 32, 223-234. https://doi.org/10.9727/jmsk.2019.32.3.223
  37. Yoo, B.C., 2020a, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64. https://doi.org/10.22807/KJMP.2020.33.1.53
  38. Yoo, B.C., 2020b, Occurrence and chemical composition of W-bearing rutile from the Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 33, 115-127. https://doi.org/10.22807/KJMP.2020.33.2.115
  39. Yoo, B.C., Lee, G.J., Lee, J.K., Ji, E.K. and Lee, H.K., 2009, Element dispersion and wallrock alteration from Samgwang deposit. Economic and Environmental Geology, 42, 177-193.
  40. Zane, A. and Weiss, Z., 1998, A procedure for classifying rock-forming chlorites based on microprobe data. Rendiconti Lincei. Scienze Fisiche e Naturali, 9, 51-56. https://doi.org/10.1007/BF02904455