• 제목/요약/키워드: $N_2$-Plasma Treatment

검색결과 411건 처리시간 0.026초

스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구 (A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition)

  • 김동원;박정원;김상호;박종수
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • 김성수
    • 통합자연과학논문집
    • /
    • 제3권2호
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

단백질 칩 기판의 플라즈마 효과 (Effects of Plasma on the Surface of Protein Chip Plates)

  • 현준원;김나연
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.549-554
    • /
    • 2008
  • 수소 플라즈마 처리된 유리 기판에 스핀 코팅 시스템을 이용하여 nickel chloride를 코팅하여 단백질칩 플레이트를 제조하였다. 다양한 플라즈마 처리 시간대에서 histidine tagged 단백질의 부착 능력 특성을 연구하였다. 유리 기판 표면에서 nickel chloride와 단백질 특성을 particle size analysis를 이용하여 관찰하였고, 단백질의 부착 능력 정도를 bio imaging analyzer system으로 측정하였다. 실험 결과에 따르면, 플라즈마 처리 시간이 증가할수록 단백질 부착 능력은 감소하는 것으로 나타났다. 기판 표면에서의 단백질 부착능력 특성에 관한 mechanism은 본문의 결과 및 토의에서 논의되었다. 플라즈마 처리된 단백질칩 기판에 대한 표면 안정화는 바이오센서 시장에서 큰 관심을 끌 것으로 기대된다.

316L 오스테나이트계 스테인리스강의 저온 플라즈마질화처리시 공정변수가 표면경화층 특성에 미치는 영향 (The Effects of Processing Parameters on Surface Hardening Layer Characteristics of Low Temperature Plasma Nitriding of 316L Austenitic Stainless Steel)

  • 이인섭
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.194-202
    • /
    • 2019
  • A systematic investigation was made on the influence of processing parameters such as gas composition and treatment temperature on the surface characteristics of hardened layers of low temperature plasma nitrided 316L Austenitic Stainless Steel. Various nitriding processes were conducted by changing temperature ($370^{\circ}C$ to $430^{\circ}C$) and changing $N_2$ percentage (10% to 25%) for 15 hours in the glow discharge environment of a gas mixture of $N_2$ and $H_2$ in a plasma nitriding system. In this process a constant pressure of 4 Torr was maintained. Increasing nitriding temperature from $370^{\circ}C$ to $430^{\circ}C$, increases the thickness of S phase layer and the surface hardness, and also makes an improvement in corrosion resistance, irrespective of nitrogen percent. On the other hand, increasing nitrogen percent from 10% to 25% at $430^{\circ}C$ decreases corrosion resistance although it increases the surface hardness and the thickness of S phase layer. Therefore, optimized condition was selected as nitriding temperature of $430^{\circ}C$ with 10% nitrogen, as at this condition, the treated sample showed better corrosion resistance. Moreover to further increase the thickness of S phase layer and surface hardness without compromising the corrosion behavior, further research was conducted by fixing the $N_2$ content at 10% with introducing various amount of $CH_4$ content from 0% to 5% in the nitriding atmosphere. The best treatment condition was determined as 10% $N_2$ and 5% $CH_4$ content at $430^{\circ}C$, where the thickness of S phase layer of about $17{\mu}m$ and a surface hardness of $980HV_{0.1}$ were obtained (before treatment $250HV_{0.1}$ hardness). This specimen also showed much higher pitting potential, i.e. better corrosion resistance, than specimens treated at different process conditions and the untreated one.

양모직물의 염착농도에 미치는 저온플라즈마 처리의 영향 (Effect of Low Temperature Plasma Pretreatment on the Color Depth of Wool Fabrics)

  • 배소영;이문철
    • 한국염색가공학회지
    • /
    • 제4권2호
    • /
    • pp.76-83
    • /
    • 1992
  • Wool tropical and nylon taffeta were treated with low temperature plasma of $O_2$, $N_2$, NH$_3$, CF$_4$ and CH$_4$ for the intervals of 10 to 300 sec, and then dyed with leveling and milling type acid dyes in presence or absence of buffer solution. From the color depth of dyed fabrics, effect of plasma gases, treated time, dyeing time and temperature on dyeing property was studied. The results of the experiment can be summarized as follows: 1) The plasma treatments except methane gas increased the color depth of dyed wool fabrics, but not that of dyed nylon fabrics regardless of the plasma gases used. 2) The color depth of wool fabrics dyed in the dye bath without buffer solution was increased by the low temperature plasma, especially increased much more by CF$_4$ plasma treatment. It is found that with the identification of F- ion in the residual dye bath the hydrogen fluoride gas was adsorbed on wool fabrics in the plasma treatment. 3) The color depth of wool fabrics was increased with the time of $O_2$ and CF$_4$ plasma treatments. 4) In both cases of the leveling and milling type acid dyes, the rate of dyeing was increased in the low temperature plasma treatments, and it is found that the leveling type acid dye increased the color depth at relatively low temperature below 4$0^{\circ}C$, compared with the milling type acid dye.

  • PDF

플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질 (Plasma Etching and Polymerization of Carbon Fiber)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF

HIP Effects on Mechanical Properties of Oxide Plasma-sprayed Coatings

  • Korobova, N.;Soh, Dea-Wha
    • 동굴
    • /
    • 제76호
    • /
    • pp.61-66
    • /
    • 2006
  • The present report is the investigation of the effects of the HIP treatment on plasma-sprayed ceramic coating of $Al_2O_3$, $Al_2O_3-SiO_2$ on the metal substrate. These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing.

SM45C 탄소강의 플라즈마 침류질화 처리 시 $H_2S$, $C_3H_8$ 가스 첨가에 따른 미세조직 및 마찰계수의 변화 (Micro Structure and the Coefficient of Friction with $H_2S$ and $C_3H_8$ Gas Addition During Plasma Sulf-nitriding of SM45C Carbon Steel)

  • 고영기;문경일;이원범;김성완;유용주
    • 열처리공학회지
    • /
    • 제20권5호
    • /
    • pp.237-242
    • /
    • 2007
  • Friction coefficient of SM45C steel was surprisingly reduced with $H_2S$ and $C_3H_8$ gas during plasma sulf-nitriding. During the plasma sulf-nitriding, 100-700 sccm of $H_2S$ gas and 100 sccm of $C_3H_8$ gas were added and working pressure and temperature were 2 torr, $500-550^{\circ}C$, respectively. As $H_2S$ gas amount increased over 500 sccm, flake-like structures were developed on top of the nitriding layer and grain size of the nitriding layer were about 100 nm. The friction coefficient for the sample treated plasma sulf-nitriding under $N_2-H_2S$ gas was 0.4 - 0.5. The structure became more finer and amorphous-like along with $N_2-H_2S-C_3H_8$ gas and the nano-sized surface microstructures resulted in high hardness and significantly low friction coefficient of 0.2.

마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향- (The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter-)

  • 이재식;김한군;유용주
    • 열처리공학회지
    • /
    • 제14권1호
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

플렉서블 디스플레이 적용을 위한 저온 실리콘 질화막의 N2 플라즈마 처리 영향 (Influence of Nitrogen Plasma Treatment on Low Temperature Deposited Silicon Nitride Thin Film for Flexible Display)

  • 김성종;김문근;권광호;김종관
    • 한국전기전자재료학회논문지
    • /
    • 제27권1호
    • /
    • pp.39-44
    • /
    • 2014
  • Silicon nitride thin film deposited with Plasma Enhanced Chemical Vapor Deposition was treated by a nitrogen plasma generated by Inductively Coupled Plasma at room temperature. The treatment was investigated by Fourier Transform Infrared Spectroscopy and Atomic Force Microscopy on the surface at various RF source powers at two RF bias powers. The amount of hydrogen was reduced and the surface roughness of the films was decreased remarkably after the plasma treatment. In order to understand the causes, we analyzed the plasma diagnostics by Optical Emission Spectroscopy and Double Langmuir Probe. Based on these analysis results, we show that the nitrogen plasma treatment was effective in the improving of the properties silicon nitride thin film for flexible display.