• Title/Summary/Keyword: $NH_4$

Search Result 4,434, Processing Time 0.033 seconds

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo;Kim, Younghun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.401-406
    • /
    • 2017
  • Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

Thermal Decomposition of Ammonium Salts of Transition Metal Oxyacids. V. Study on the Thermal Decomposition of Ammonium Metavanadate (전위금속의 산소산염의 열분해에 관한 연구 (제5보) Ammonium Metavanadate의 열분해에 따르는 $V_2O_5$의 생성)

  • Il-Hyun Park
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.157-165
    • /
    • 1972
  • Thermal decomposition of ammonium metavanadate has been investigated by using the quartz spring balance and differential thermal analysis. It showed that the decomposition of ammonium metavanadate is proceeded at two stages which correspond to $180^{\circ}C-220^{\circ}C$ and $310^{\circ}C-330^{\circ}C$ decomposition temperatures, respectively. Evolved ammonia gas in thermal decomposition has been analyzed quantitatively by titration. And the constituents of gases evolved have been evaluated by gas chromatography and omegatron spectrometer. From these results, it was concluded that the gases evolved in the first step decomposition were $NH_3$ and $H_2O$ with 2:1 ratio and the second step decomposition corresponded to the formation of $NH_3$, $H_2O$ and $N_2O$ which was produced in oxidation of $NH_3$ by $V_2O_5$. The decomposition products were identified by means of X-ray diffraction method. The decomposition product in air was V_2O_5 and the product in vacuum $V_3O_7.$ The kinetics of the thermal decomposition was studied, giving the values of the activation energy of 41.4 kcal/mole and 64.4 (kcal/mole) respectively.

  • PDF

Synthesis and Thermo-responsive Properties of Amino Group Terminated Poly(N-isopropylacrylamide) and Sodium Alginate-g-Poly(N-isopropylacrylamide) (말단 아민기를 갖는 폴리(N-이소프로필아크릴아미드) 및 알긴산 나트륨-g-폴리(N-이소프로필아크릴아미드)의 합성과 열응답 특성)

  • Lee, Eun Ju;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.539-546
    • /
    • 2013
  • Amino group-terminated poly(N-isopropylacrylamide) (PNIPAAm-$NH_2$) was synthesized via a radical polymerization of N-isopropylacrylamide (NIPAAm) using 2-aminoethanethiol hydrochloride (AESH) as a chain transfer agent. The molecular weight of the PNIPAAm-$NH_2$ was controlled by changing the concentration of AESH. The LCST of the aqueous solution of PNIPAAm-$NH_2$ increased slightly with increasing the AESH concentration. Alginate-g-PNIPAAm copolymer was synthesized by grafting PNIPAAm-$NH_2$ onto sodium alginate using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide. The formation of the grafted copolymers was confirmed by FTIR spectroscopy, solubility in water, and SEM-EDS. Alginate-g-PNIPAAm also exhibited swelling-deswelling behavior. However, it showed a LCST at a slightly increased temperature compared to PNIPAAm. The swelling ratio of the alginate-g-PNIPAAm hydrogel increased with the increase of the grafted PNIPAAm content.

Evaluation of Nutrients Removal using Pyrolyzed Oyster Shells (소성온도에 따른 굴 패각의 영양염 제거 성능 평가)

  • Jeong, Ilwon;Woo, Hee-eun;Lee, In-Cheol;Kim, Jinsoo;Kim, Kyunghoi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.906-913
    • /
    • 2019
  • To evaluate the removal performance of PO4-P and NH3-N, laboratory experiments were conducted by filling a container with oyster shells, pyrolyzed at 100℃ (POS100), 600℃ (POS600) and 800℃ (POS800), and passing artificial wastewaters through the container. The pH in the ef luent was found to increase due to CaO eluted from oyster shell. Removal amounts of PO4-P of ~23.1 mg/kg, 16.1 mg/kg, and 15.9 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used; therefore, the highest PO4-P removal amount was obtained when POS100 was used. It is considered that Ca and dolomite in the oyster shells adsorbed and precipitated PO4-P. Removal amounts of NH3-N were of ~3.56 mg/kg, 5.72 mg/kg, and 3.97 mg/kg were obtained when POS100, POS600, and POS800, respectively, were used The low removal rate for NH3-N is probably due to unstable nitrification, use of sealed containers, and the effect of NH3-N being converted to NH4+ upon increasing pH. Based on these results, pyrolyzed oyster shell is expected to promote changes in PO4-P and NH3-N concentrations through chemical reactions. These results can also be used for basic research in the development of wastewater treatment.

Ion Compositional Existence Forms of PM10 in Seoul Area (서울지역 미세먼지(PM10) 중 이온성분의 존재형태 추정)

  • Lee, Kyoung-Bin;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Particulate matter (PM) has emitted in many regions of the world and is causing many health-related problems. Thus reasonable politics and solutions are needed to reduce PM in Seoul. Further it is required to clearly explain the major portions of chemical components contained in $PM_{10}$ to figure out the characteristics of $PM_{10}$, and to develop effective reduction measures in order to decrease the adverse effects of $PM_{10}$. $PM_{10}$ samples were collected in Seoul and analyzed their ions to examine the physical and chemical characteristics of ionic species. Since hydrogen ion ($H^+$) and carbonate ion (${CO_3}^{2-}$)) cannot be analyzed by Ion chromatography (IC), concentrations of $H^+$ and ${CO_3}^{2-}$ were initially estimated by pH and equivalent differences between anions and cations in this study. Starting from the study findings, good combination results for compositional patterns between anions and cations were obtained by applying a mathematical modelling technique that was based on the mass balance principle. The ions in $PM_{10}$ were combined with $H^+$, ${CO_3}^{2-}$, and supplement for $NO_3{^-}$, $Cl^-$ formed such compounds $NH_4Cl$, $NH_4NO_3$, $CaSO_4$, $(NH_4)_2SO_4$, $NaNO_3$, NaCl, $Na_2CO_3$, and $(NH_4)_2CO_3$ in the study area.

Effects of Nitrogen and Phosphorus Fertilization on Ectomycorrhiza Development, N-Fixation and Growth of Red Alder Seedlings (질소(窒素)와 인산(燐酸) 시비(施肥)가 루브라 오리나무(Alnus rubra Bong.) 묘목(苗木)의 외생균근발달(外生菌根發達)과 질소고정(窒素固定) 및 생장(生長)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randolph J.;Miller, Steven L.;Li, Ching Y.
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.96-106
    • /
    • 1996
  • Red alder(Alnus rubra Bong.) seedlings inoculated with Frankia only or both Frankia and spores of Alpova diplophloeus(Zeller & Dodge) Trappe & Smith were grown in a greenhouse for ten weeks. The ten-week-old seedlings were fertilized with six nitrogen(N) and phosphorus(P) fertility regimes (no fertilization, 10mM $NH_4NO_3$, 50mM $NH_4NO_3$, 5mM $KH_2PO_4$, 10mM $NH_4NO_3+5mM$ $KH_2PO_4$, and 50mM $NH_4NO_3+5mM$ $KH_2PO_4$) three times a week for ten weeks. The higher N-fertilization significantly increased mycorrhiza formation by greenhouse contaminant mycorrhizal fungi, but decreased N-fixation and P concentration in nodule tissues. P-fertilization significantly increased nodule and shoot dry weight, and P concentration in plant tissues. When N was highly fertilized, however, the P-fertilization effect disappeared in nodule P concentration but doubled in leaf P concentration. A. diplophloeus inoculation significantly increased diameter growth and $CO_2$ exchange rate, but decreased leaf dry weight. Our results suggest that the higher N- or P-fertilization affect nitrogenase activity and mycorrhizal development but the effects are changed by their interactions.

  • PDF

The Characteristics of PM2.5 and Acidic Air Pollutants in the Vicinity of Industrial Complexes in Gwangyang (광양산업단지 인근지역 대기 중 미세먼지 (PM2.5)와 산성오염물질 특성)

  • Kang, Byung-Wook;Jeong, Man-Ho;Jeon, Jun-Min;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.16-29
    • /
    • 2011
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect data set of the acidic air pollutants in the vicinity of industrial complexes in Gwangyang. The data set was collected during sixty different days with 24 hour sampling period from January 8, 2008 through November 12, 2008. The annual mean concentrations of $HNO_3$, $HNO_2$, $SO_2$ and $NH_3$ in the gas phase were 1.12, 1.40, 10.2 and 1.28 ${\mu}g/m^3$, respectively. The annual mean concentrations of $PM_{2.5}$ ($d_p$<2.5 ${\mu}m$), $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ in the particulate phase were 29.2, 8.25, 3.30 and 3.42${\mu}g/m^3$, respectively. $HNO_3$ and $NH_3$ exhibited higher concentrations during the summer, while $HNO_2$, $PM_{2.5}$, $NO_3^-$ and $NH_4^+$ were higher during the winter. The highest level of $SO_2$ was, unlikely, observed in the summer and $SO_4^{2-}$ was not showed seasonal variation. $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ accounted for 49~57% of the $PM_{2.5}$ mass. $SO_4^{2-}$ was the most abundant component, which constituted 23~40% of $PM_{2.5}$. High correlations were found among $PM_{2.5}$, $SO_4^{2-}$, $NO_3^-$, and $NH_4^+$.

Characteristics of Gas- and Particle-phase Acids and $NH_3$ at Urban and Rural Sites in Korea

  • Ma Chang-Jin;Kim Hui-Kang;Kang Gong-Unn;Tohno Susumu;Kasahara Mikio
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.15-28
    • /
    • 2004
  • To study the characteristics of ammonia and the related compounds, atmospheric aerosols and gases were collected using a triple filter pack sampler, a low volume air sampler, and a three-stage Anderson air sampler in Seoul and Kangwha Island, Korea from Dec. 1996 to Oct. 1997. Ammonia concentrations showed approximately two times higher in summer than in winter at both sites. The highest $HNO_3$ levels were generally observed in summertime at two sampling sites. The average mass concentration of $PM_{2.5}$ in heavily industrialized Seoul was about three times higher than that of Kangwha. In winter, the sum of $NH_4^+$ and its counter ions (such as $Cl^-,\;NO_3^-$, and $SO_4^{2-}$) comprised $30-41\%$ of $PM_{2.5}$ mass concentration at each sampling site. Temperature dependence of particulate nitrate was examined at the urban sampling site. The formation of the nitrate in the fine mode was dependent not only on the amount of precursors but also on the variation of temperature. $(NH_4)_2SO_4$ and $NH_4HSO_4$ coexisted with $NH_4NO_3$ and $NH_4Cl$ at each site. According to the summertime backward trajectory analysis, $NO_3^-$ showed higher level with air parcels transported from northeast Asian continent. On the other hand, the concentration of $SO_4^{2-}$ showed significantly higher level when air masses originated from Pacific Ocean, southern part of Japan, and Korea.

Uptake of Carbon and Nitrogen by Microcystis Algal Assemblages in the Seonakdong River

  • Lee, Ok-Hee;Cho, Kyung-Je
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Carbon ($^{14}CO_2$) and nitrogen ($^{15}NH_4$ and $^{15}NO_3$) uptake were measured at two stations in the hypertrophic zone of the Seonakdong River, where Microcystis aeruginosa explosively bloomed in September 1998. Significant nitrogen limitation occurred in the period of Microcystis bloom, while phosphorus limitation was common in the river. The specific nitrogen ($NH_4$ + $NO_3$) uptake was 12-50 $\mu$mol mg chl-a$^{-1}$ hr$^{-1}$ at two stations, showing substantially higher than for any other freshwaters. The specific nirtogen uptake was higher at the GAR Station of the nitrogen-limited area and this high nirtogen uptake resulted in low $^{14}C:^{15}N$ atomic ratios of algal uptake. Carbon uptake was dependent upon irradiance, decreasing gradually toward the bottom in the euphotic zone, whereas the nitrogen uptake increased slightly toward the bottom. $NH_4$ preferable uptake against $NO_3$ was hardly discemilble due to the fact that it exceeded the $NH_4$ ambient concentraiton. The $^{14}C:^{15}N$ atomic ratios of algal uptake in the surface waters approached the Redfield C:N ratio.

A New Method of Extracting Whole Cell Proteins from Soil Microorganisms Using Pre-treatment of Ammonium Hydroxide

  • Kang, Han-Chul;Kim, Jong-Bum;Roh, Kyung Hee;Yoon, Sang-Hong
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • Efficient extraction of total proteins from soil microorganisms is tedious because of small quantity. In this regard, an improved method for extraction of whole cell proteins is developed from soil microorganisms, Saccharomyces cerevisiae and Pichia pastoris. of which the cell wall are very strong. Pretreatment with NH4OH prior to the final extraction using NaOH/SDS was tried under the basis that ammonium ion was possible to enhance the permeability and/or to weaken the yeast cell walls. The pre-treatment of yeast cells with NH4OH drastically enhanced the protein extraction when it was compared with control (without NH4OH pre-treatment). At the pre-treatment of 0.04 N NH4OH at pH 9.0, about 3 fold of proteins was obtained from p. pastoris. Ammonium hydroxide appears to penetrate into the yeast cell walls more readily at basic pH. The effect of NH4OH pretreatment was pH dependent. The methods developed in this experiment might be applicable for an effective extraction of yeast proteins for the purpose of biochemical studies, especially proteomic analysis.