DOI QR코드

DOI QR Code

Synthesis and Thermo-responsive Properties of Amino Group Terminated Poly(N-isopropylacrylamide) and Sodium Alginate-g-Poly(N-isopropylacrylamide)

말단 아민기를 갖는 폴리(N-이소프로필아크릴아미드) 및 알긴산 나트륨-g-폴리(N-이소프로필아크릴아미드)의 합성과 열응답 특성

  • Lee, Eun Ju (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 이은주 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2013.03.29
  • Accepted : 2013.04.28
  • Published : 2013.07.25

Abstract

Amino group-terminated poly(N-isopropylacrylamide) (PNIPAAm-$NH_2$) was synthesized via a radical polymerization of N-isopropylacrylamide (NIPAAm) using 2-aminoethanethiol hydrochloride (AESH) as a chain transfer agent. The molecular weight of the PNIPAAm-$NH_2$ was controlled by changing the concentration of AESH. The LCST of the aqueous solution of PNIPAAm-$NH_2$ increased slightly with increasing the AESH concentration. Alginate-g-PNIPAAm copolymer was synthesized by grafting PNIPAAm-$NH_2$ onto sodium alginate using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide. The formation of the grafted copolymers was confirmed by FTIR spectroscopy, solubility in water, and SEM-EDS. Alginate-g-PNIPAAm also exhibited swelling-deswelling behavior. However, it showed a LCST at a slightly increased temperature compared to PNIPAAm. The swelling ratio of the alginate-g-PNIPAAm hydrogel increased with the increase of the grafted PNIPAAm content.

열응답성 고분자인 폴리(N-이소프로필아크릴아미드) (PNIPAAm) 말단에 아민기를 갖는 PNIPAAm-$NH_2$ 및 이들 알긴산 나트륨에 그래프팅시킨 공중합체를 합성하고 이들의 여러 가지 특성들을 분석하였다. PNIPAAm-$NH_2$를 합성하기 위하여 N-이소프로필아크릴아미드를 라디칼 중합할 때 2-aminoethanethiol hydrochloride (AESH)를 연쇄이동제로 사용하였다. AESH 농도를 높이면 PNIPAAm-NH2의 분자량이 작아지며 PNIPAAm-$NH_2$ 수용액의 하한임계용액온도(LCST)가 낮아졌다. N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide 및 N-hydroxysuccinimide를 사용하여 PNIPAAm-$NH_2$를 graft-onto 방법으로 알긴산 나트륨에 그래프팅시킨 alginate-g-PNIPAAm 공중합체 역시 온도에 따라 팽윤-수축 거동을 하였으며, PNIPAAm-$NH_2$보다 약간 높은 온도에서 LCST를 나타내었고, 그래프트된 PNIPAAm의 양이 많아질수록 팽윤비가 커졌다.

Keywords

References

  1. F. Liu and M. W. Urban, Prog. Polym. Sci., 35, 33 (2010).
  2. J. H. Ann, Y. S. Jeon, D. J. Chung, and J. H. Kim, Polymer(Korea), 35, 94 (2011).
  3. Y. H. Lim, D. Kim, and D. S. Lee, J. Appl. Polym. Sci., 64, 2647 (1990).
  4. A. K. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci., 33, 1088 (2009).
  5. D. Kucking, A. Richter, and K. F. Arndt, Macromol. Mat. Eng., 144, 288 (2003).
  6. L. Liang, X. D. Feng, P. F. C. Martin, and L. M. Peurrung, J. Appl. Polym. Sci., 75, 1735 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000401)75:14<1735::AID-APP7>3.0.CO;2-R
  7. J. Hu and S. Liu, Macromolecules, 43, 8315 (2010). https://doi.org/10.1021/ma1005815
  8. N. Kayaman, D. Kazan, A. Erarslan, O. Okay, and B. M. Baysal, J. Appl. Polym. Sci., 67, 805 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<805::AID-APP5>3.0.CO;2-X
  9. M. Weinhart, T. Becherer, and R. Haag, Chem. Commun., 47, 1553 (2011). https://doi.org/10.1039/c0cc04002a
  10. D. Schmaljohann, Adv. Drug Deliver. Rev., 58, 1655 (2006). https://doi.org/10.1016/j.addr.2006.09.020
  11. J. R. Moon and J. H. Kim, Macromol. Res., 16, 489 (2008). https://doi.org/10.1007/BF03218549
  12. Y. J. Oh, G. B. Lee, and S. Y. Park, Polymer(Korea), 36, 223 (2012).
  13. Y. Liu, X. Y. Liu, H. J. Liu, F. Cheng, and Y. Chen, Macromol. Res., 20, 578 (2012). https://doi.org/10.1007/s13233-012-0079-1
  14. H. G. Schild, Prog. Polym. Sci., 17, 163 (1992). https://doi.org/10.1016/0079-6700(92)90023-R
  15. K. Fujii, T. Ueki, K. Niitsuma, T. Matsunaga, M. Watanabe, and M. Shibayama, Polymer, 52, 1589 (2011). https://doi.org/10.1016/j.polymer.2011.01.037
  16. C. Boutris, E. G. Chatzi, and C. Kiparissides, Polymer, 38, 2567 (1997). https://doi.org/10.1016/S0032-3861(97)01024-0
  17. M. V. Deshmukha, A. A. Vaidyab, M. G. Kulkarnib, P. R. Rajamohanana, and S. Ganapathy, Polymer, 41, 7951 (2000). https://doi.org/10.1016/S0032-3861(00)00174-9
  18. O. H. Wen, S. Kuroda, and H. Kubota, Eur. Polym. J., 37, 807 (2001). https://doi.org/10.1016/S0014-3057(00)00173-7
  19. K. Tauer, D. Gau, S. Schulze, A. Volkel, and R. Dimova, Colloid Polym. Sci., 287, 299 (2009). https://doi.org/10.1007/s00396-008-1984-x
  20. R. Yu and S. Zheng, J. Biomater. Sci., 22, 2305 (2011). https://doi.org/10.1163/092050610X538722
  21. R. Zhang, Polymer, 46, 2443 (2005). https://doi.org/10.1016/j.polymer.2005.02.006
  22. M. A. Cooperstein and H. E. Canavan, Langmuir, 26, 7695 (2010). https://doi.org/10.1021/la902587p
  23. A. Pourjavadi, M. S. Amini-Fazl, and H. Hosseinzadeh, Macromol. Res., 13, 45 (2005). https://doi.org/10.1007/BF03219014
  24. S. M. Han, C. W. Nam, and S. W. Ko, J. Korean Fiber Soc., 37, 365 (2000).
  25. S. Teng, J. Shi, B. Peng, and L. Chen, Compos. Sci. Technol., 66, 1532 (2006). https://doi.org/10.1016/j.compscitech.2005.11.021
  26. N. E. Simpson, C. L. Stabler, C. P. Simpson, A. Sambanis, and I. Constantinidis, Biomaterials, 25, 2603 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.046
  27. S. K. Papageorgiou, E. P. Kouvelos, E. P. Favvas, A. A. Sapalidis, G. E. Romanos, and F. K. Katsaros, Carbohyd. Res., 345, 469 (2010). https://doi.org/10.1016/j.carres.2009.12.010
  28. S. J. Park and J. Y. Kang, Polymer(Korea), 29, 369 (2005).
  29. G. Socrates, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York, 2001.
  30. B. G. Kutchko and A. G. Kim, Fuel, 85, 2537 (2006). https://doi.org/10.1016/j.fuel.2006.05.016