• Title/Summary/Keyword: $MnO_x$

Search Result 865, Processing Time 0.036 seconds

Development of High-performance Supercapacitors Based on MnO2/Functionalized Graphene Nanocomposites (망간산화물/기능화된 그래핀 나노복합체에 기반한 고성능 슈퍼커패시터 개발)

  • Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.439-443
    • /
    • 2016
  • In this report, $MnO_2$ nanoparticle-deposited functionalized graphene sheets were prepared and their superior electrochemical performances were demonstrated by cyclic voltammetry, galvanostatic charge-discharge, and impedance analysis. Ionic liquids were employed to functionalize the surface of reduced graphene oxides (RGOs), leading to prevention of the aggregation of RGO sheets and abundant growth sites for deposition of $MnO_2$ nanoparticles. As-prepared $MnO_2/RGO$ nanocomposites were characterized using scanning electron microscope, transition electron microscope, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical properties of $MnO_2/RGO$ electrode were evaluated using $Na_2SO_4$ electrolyte under a three-electrode system. The $MnO_2/RGO$ electrode showed a high specific capacitance (251 F/g), a high rate capability (80.5% retention), and long-term stability (93.6% retention).

Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film (Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성)

  • Cho, Youngsoo;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.190-195
    • /
    • 2021
  • Typical Mn-SnO2/Ag/Mn-SnO2 tri-layer films were prepared on a PET substrate by RF/DC magnetron sputtering method at room temperature. Based on EMP simulation, the thicknesses of the top and bottom Mn-doped SnO2 layers were kept at 40 nm and the Ag layer was maintained at 13 nm for continuous electrical conduction. The experimentally measured optical transmittances at 550 nm wavelength were ranged from 82.9 to 88.1 % and sheet resistances were varied from 5.9 to 6.9 Ω/☐. The highest value of figure of merit, ϕTC was 48.1 × 10-3 Ω-1. Based on bending test under 4 and 5 mm of inner and outer curvature radius condition, tri-layer film resistance varies only by approximately 1.5 % after 10,000 bending cycles, showing excellent mechanical flexibility.

Charge-discharge capacity and AC impedance of $LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) cathode ($LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) 정극의 충방전 용량 및 AC 임피던스 특성)

  • 정인성;위성동;이승우;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.455-458
    • /
    • 2001
  • Spinel $LiMn_{2-y}$$M_{y}$ $O_4$powder was prepared solid-state method by calcining the mixture of LiOH - $H_2O$, Mn $O_2$, ZnO and MgO at 80$0^{\circ}C$ for 36h. To investigate the effect of substitution with Mg, Zn cation, charge-discharge experiments and initial impedance spectroscopy performed. The structure of $LiMn_{2-y}$$M_{y}$ $O_4$crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. all cathode material showed spinel phase based on cubic phase in X-ray diffraction. Ununiform which calculated by (111) face and (222) face was constant in spite of the change of y value, except PUf\ulcorner LiM $n_2$ $O_4$. The discharge capacities of the cathode for the cation subbstitUtes $LiMn_{2-y}$$M_{y}$ $O_4$/Li cell at the 1st cycle and at the 40th cycle were about 120~124 and 108~112mAh/g except LiM $n_{1.9}$Z $n_{0.1}$ $O_4$/Li cell, respectively. This cell capacity is retained by 93% after 40th cycle. AC impedance of $LiMn_{2-y}$$M_{y}$ $O_4$/Li cells revealed the similar resistance of about 65~110$\Omega$ before cycling. before cycling.g.g.

  • PDF

Determination of the Thermolelectric Properties of NaxCo2O4 by Controlling the Concentration of Na and Additive (NaxCo2O4의 열전특성에 미치는 Na 함량변화와 첨가제의 효과)

  • Choi, Soon-Mok;Jeong, Seong-Min;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.689-694
    • /
    • 2009
  • Layer-structured $Na_xCo_2O_4$ was synthesized from $Na_2CO_3\;and\;Co_3O_4$ powders. The chemical concentrations of Na and additive were controlled to enhance the thermoelectric properties over the temperature range from 400 K to 1,150 K. As a result, we obtained the maximum thermoelectric properties at a single phase region with Na content of x=1.5. When Na content was smaller than x=1.5, the thermoelectric properties was low due to formation of second phases of CoO and other oxides. Additionally, Mn was doped to improve thermoelectric properties by means of decreasing thermal conductivity. The results showed that the concentrations of both Na and Mn are all governing factors to determine the thermoelectric properties of $Na_xCo_2O_4$ system.

A syudy on electrochemical charcteristic of $Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075) ($Li_{1-x}Mn_{2}O_{4}$(0$\leq$x$\leq$0.075)의 전기화학적 특성연구)

  • 박종광;고건문;김민기;이남재;임석진;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.444-447
    • /
    • 2000
  • The spinel L $i_{1-x}$ M $n_2$ $O_4$has been synthesized by the solid-state reaction. L $i_{l-x}$M $n_2$ $O_4$which includes a mixture of LiOH . $H_2O$ and Mn $O_2$prepared by preliminary heating at 35$0^{\circ}C$ for 12hr. L $i_{l-x}$M $n_2$ $O_4$fired at temperature range from 75$0^{\circ}C$ for 48hr. The structure and the electrochemical characteristics of spinel to L $i_{1-x}$ M $n_2$ $O_4$which is fabricated by changing sintering condition from starting materials are investigated. The cyclic voltammetric measurement was performed using 3 electrode cells. Electrode specific capacity and cycle life behavior were tested in a 3.0~4.2V range at a constant current density of 0.45mA/c $m^2$. To improve the cycle performance of spinel L $i_{l-x}$M $n_2$ $O_4$as the cathode of 4V class lithium secondary batteries, spinel phases L $i_{1-x}$ M $n_2$ $O_4$were Prepared at various lithium. The results showed that discharge capacity of L $i_{l-x}$M $n_2$ $O_4$varied at lithium quantity decrease with increasing lithium add quantity. The discharge capacities of L $i_{0.925}$M $n_2$ $O_4$and LiM $n_2$ $O_4$revealed 108 and 117mAh/g, respectively.spectively.y.

  • PDF

Relation of X-ray diffraction and charge/discharge capacity Of LiMn$_2$O$_4$ cathode for Lithium ion batteries (리튬 이온 전지용 LiMn$_2$O$_4$ 정극의 X-선 회절 분석과 충방전 용량과의 관계)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.347-350
    • /
    • 1998
  • We studied relation of X-ray diffraction and charge/discharge capacity of LiMn$_2$O$_4$ cathode. LiMn$_2$O$_4$ is prepared by reacting stoichiometric mixture of LiOH.$H_2O$ and MnO$_2$ (mole ratio 1 : 2) and heating at $700^{\circ}C$, 80$0^{\circ}C$ for 24hr, 36hr, 48hr, 60hr and 72hr. Through X-ray diffraction pattern, it is analyzed that crystal structure and lattice parameter and peak ratio so on. We obtained X-ray diffraction pattern that varied lattice parameter and peak intensity by function of calcining temperature and time. Cathode active materials calcined at 80$0^{\circ}C$ for 36hr shown that (111)/(311) Peak ratio at X-ray diffraction pattern was 0.37. It means that crystal structure is formed very well in this temperature and time. In the result of charge/discharge test, cathode active material calcined at 80$0^{\circ}C$ for 36hr displayed excellent charge/discharge properties than that of cathode active materials calcined at other temperature and title. In this study, we certified that spinel structure basied cubic is formed very well at 80$0^{\circ}C$ for 36hr. In this case, (111)/(311) peak ratio at X-ray diffraction is 0.37, and charge/discharge properties is excellent than others.

  • PDF

Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3 (γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성)

  • Kim, Hye-jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • The catalytic oxidation of toluene over $-Al_2O_3$ supported copper-manganese oxide catalysts in the temperature range of $160-280^{\circ}C$ was investigated by employing a fixed bed flow reactor. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxidation(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of toluene was achieved at the below $280^{\circ}C$, and the optimal content of copper and manganese in the catalyst was found to be 15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15 Cu-10 Mn catalyst shifted to the lower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered that $Cu_{1.5}Mn_{1.5}O_4$ is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and also catalytic activities are dependent on the redox ability and high oxidation state of catalysts.

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics (수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구)

  • Hong, Seok Bok;Kang, On Yu;Hwang, Sung Yeon;Heo, Young Min;Kim, Jung Won;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.653-658
    • /
    • 2016
  • In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.