DOI QR코드

DOI QR Code

Synthesis of MnO2 Nanowires by Hydrothermal Method and their Electrochemical Characteristics

수열합성법을 이용한 망간 나노와이어 제조 및 이의 전기화학적 특성 연구

  • Hong, Seok Bok (Department of Chemical Engineering, Kangwon National University) ;
  • Kang, On Yu (Department of Chemical Engineering, Kangwon National University) ;
  • Hwang, Sung Yeon (Korea Research Institute of Chemical Technology) ;
  • Heo, Young Min (SKC Advanced Technology R&D Center) ;
  • Kim, Jung Won (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2016.11.14
  • Accepted : 2016.11.21
  • Published : 2016.12.10

Abstract

In this work, we developed a synthetic method for preparing one-dimensional $MnO_2$ nanowires through a hydrothermal method using a mixture of $KMnO_4$ and $MnSO_4$ precursors. As-prepared $MnO_2$ nanowires had a high surface area and porous structure, which are beneficial to the fast electron and ion transfer during electrochemical reaction. The microstructure and chemical structure of $MnO_2$ nanowires were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller measurements. The electrochemical properties of $MnO_2$ nanowire electrodes were also investigated using cyclic voltammetry and galvanostatic charge-discharge with a three-electrode system. $MnO_2$ nanowire electrodes showed a high specific capacitance of 129 F/g, a high rate capability of 61% retention, and an excellent cycle life of 100% during 1000 cycles.

본 연구에서는 1차원의 $MnO_2$ nanowire를 $KMnO_4$$MnSO_4$ 전구체 혼합물의 수열합성법(hydrothermal method)을 사용하여 제조할 수 있는 합성법을 개발하였다. 제조된 $MnO_2$ nanowire는 전기화학 반응 동안 전자와 이온전달을 용이하게 할 수 있는 넓은 비표면적과 기공구조를 나타내었다. MnO2 nanowire의 미세구조 및 화학구조를 주사형 전자현미경(SEM), 투과전자현미경(TEM), 광전자분석기(XPS), X-ray 회절분석법(XRD), 비표면적분석장비(BET)를 사용하여 분석하였다. 본 $MnO_2$ nanowire 전극의 전기화학적 특성은 순환전압전류법(cyclic voltammetry)과 정전류 충전-방전법(galvanostatic charge-discharge)을 사용하여 3상 전극 시스템(three-electrode system)에서 분석하였다. $MnO_2$ nanowire 전극은 높은 비정전용량(129 F/g), 고속 충방전(61% retention), 반 영구적인 수명특성(100%)을 나타내었다.

Keywords

References

  1. A. Sternberg and A. Bardow, Power-to-What? - Environmental assessment of energy storage systems, Energy Environ. Sci., 8, 389-400 (2015). https://doi.org/10.1039/C4EE03051F
  2. G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, and H.-J. Sohn, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci., 4, 1986-2002 (2011). https://doi.org/10.1039/c0ee00831a
  3. F. D. Bruijn, The current status of fuel cell technology for mobile and stationary applications, Green Chem., 7, 132-150 (2005). https://doi.org/10.1039/b415317k
  4. Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 8, 702-730 (2015). https://doi.org/10.1039/C4EE03229B
  5. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev., 44, 7484-7539 (2015). https://doi.org/10.1039/C5CS00303B
  6. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014). https://doi.org/10.1039/C4EE01432D
  7. S. P. Jiang, Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells, J. Mater. Chem. A, 2, 7637-7655 (2014). https://doi.org/10.1039/c4ta00121d
  8. M. Beidaghi and Y. Gogotsi, Capacitive energy storage in micro- scale devices: recent advances in design and fabrication of micro- supercapacitors, Energy Environ Sci., 7, 867-884 (2014). https://doi.org/10.1039/c3ee43526a
  9. Y. Zheng, Y. Yang, S. Chen, and Q. Yuan, Smart, stretchable and wearable supercapacitors: prospects and challenges, Cryst. Eng. Comm., 18, 4218-4235 (2016). https://doi.org/10.1039/C5CE02510A
  10. C. Lei, N. Amini, F. Markoulidis, P. Wilson, S. Tennison, and C. Lekakou, Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC), J. Mater. Chem. A, 1, 6037-6042 (2013). https://doi.org/10.1039/c3ta01638b
  11. G. H. Jeong, I. Lee, J.-G. Kang, H. Lee, S. Yoon, and S.-W. Kim, Mesoporous hollow carbons on graphene and their electrochemical properties, RSC Adv., 5, 73119-73125 (2015). https://doi.org/10.1039/C5RA10852G
  12. E. Senokos, V. Reguero, J. Palma, J. J. Vilatela, and R. Marcilla, Macroscopic fibers of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance, Nanoscale, 8, 3620-3628 (2016). https://doi.org/10.1039/C5NR07697H
  13. B. Hsia, M. S. Kim, C. Carraro, and R. Maboudian, Cycling characteristics of high energy density, electrochemically activated porous- carbon supercapacitor electrodes in aqueous electrolytes, J. Mater. Chem. A, 1 10518-10523 (2013).
  14. K. Makgopa, P. M. Ejikeme, C. J. Jafta, K. Raju, M. Zeiger, V. Presser, and K. I. Ozoemena, A high-rate aqueous symmetric pseudocapacitor based on highly graphitized onion-like carbon/birnessitetype manganese oxide nanohybrids, J. Mater. Chem. A, 3, 3480-3490 (2015). https://doi.org/10.1039/C4TA06715K
  15. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of $MnO_2$@polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015). https://doi.org/10.1039/C5CP04761G
  16. S. Conte, G.-G. Rodriguez-Calero, S. E. Burkhardt, M. A. Lowe, and H. D. Abruna, Designing conducting polymer films for electrochemical energy storage technologies, RSC Adv., 3, 1957-1964 (2013). https://doi.org/10.1039/C2RA22963C
  17. B. Rajender and S. Palaniappan, Organic solvent soluble methyltriphenylphosphonium peroxodisulfate: a novel oxidant for the synthesis of polyaniline and the thus prepared polyaniline in high performance supercapacitors, New J. Chem. 39, 5382-5388 (2015). https://doi.org/10.1039/C5NJ00979K
  18. Z. Zhou, Y. Zhu, Z. Wu, F. Lu, M. Jing, and X. Ji, Amorphous $RuO_2$ coated on carbon spheres as excellent electrode materials for supercapacitors, RSC Adv., 4, 6927-6932 (2014). https://doi.org/10.1039/c3ra46641h
  19. S. K. Meher and G. R. Rao, Ultralayered $Co_3O_4$ for High-Performance Supercapacitor Applications, J. Phys. Chem. C, 115, 15646-15654 (2011). https://doi.org/10.1021/jp201200e
  20. M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, $MnO_2$-based nanostructures for high-performance supercapacitors, J. Mater. Chem. A, 3, 21380-21423 (2015). https://doi.org/10.1039/C5TA05523G
  21. X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, and X. Zhang, High-performance ${\alpha}-MnO_2$ nanowire electrode for supercapacitors, Appl. Energy, 153, 94-100 (2015). https://doi.org/10.1016/j.apenergy.2014.07.094
  22. J. Ma, Q. Cheng, V. Pavlinek, P. Saha, and C. Li, Morphology-controllable synthesis of $MnO_2$ hollow nanospheres and their supercapacitive performance, New J. Chem., 37, 722-728 (2013). https://doi.org/10.1039/c2nj40880e
  23. C. Wei, L. Yu, C. Cui, J. Lin, C. Wei, N. Mathews, F. Huo, T. Sritharan, and Z. Xu, Ultrathin $MnO_2$ nanoflakes as efficient catalysts for oxygen reduction reaction, Chem. Commun., 50, 7885-7888 (2014). https://doi.org/10.1039/c4cc02781g
  24. J. H. Zeng, Y. F. Wang, Y. Yang, and J. Zhang, Synthesis of sea-urchin shaped ${\gamma}-MnO_2$ nanostructures and their application in lithium batteries, J. Mater. Chem., 20, 10915-10918 (2010). https://doi.org/10.1039/c0jm01711f
  25. Q. Li, Z.-L. Wang, G.-R. Li, R. Guo, L.-X. Ding, and Y.-X. Tong, Design and synthesis of $MnO_2/Mn/MnO_2$ sandwich-structured nanotube arrays with gigh supercapacitive performance for electrochemical energy storage, Nano Lett., 12, 3803-3807 (2012). https://doi.org/10.1021/nl301748m
  26. R. R. A. S. Nair, S. Ramakrishna, A. P. S. K, K. R. V. Subramanian, S. N. T. N. Kim, S. V. Nair, and A. Balakrishnan, Ultra fine $MnO_2$ nanowire based high performance thin film rechargeable electrodes: Effect of surface morphology, electrolytes and concentrations, J. Mater. Chem., 22, 20465-20471 (2012). https://doi.org/10.1039/c2jm35027k
  27. A. M. Toufiq, F. Wang, Q.-U. A. Javed, and Q. Li, Y. Li, Hydrothermal synthesis of $MnO_2$ nanowires: structural characterizations, optical and magnetic properties, Appl. Phys. A, 116, 1127-1132 (2014). https://doi.org/10.1007/s00339-013-8195-0
  28. K. Kim, M.-S. Kim, and T. Yeu, The preparation of non-aqueous supercapacitors with lithium transition-Metal oxide/activated carbon composite positive electrodes, Bull. Korean Chem. Soc., 31, 3183-3189 (2010). https://doi.org/10.5012/bkcs.2010.31.11.3183
  29. X. Zhang, W. Yang, J. Yang, and D. G. Evans, Synthesis and characterization of ${\alpha}-MnO_2$ nanowires: Self-assembly and phase transformation to ${\beta}-MnO_2$ microcrystals, J. Cryst. Growth, 310, 716-722 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.113
  30. C.-L. Ho and M.-S. Wu, Manganese oxide nanowires grown on ordered macroporous conductive nickel scaffold for high- performance supercapacitors, J. Phys. Chem. C, 115, 22068-22074 (2011). https://doi.org/10.1021/jp2081337
  31. M. Yang, S. B. Hong, and B. G. Choi, Hierarchical $MnO_2$ nanosheet arrays of carbon fiber for high-performance pseudocapacitors, J. Electroanal. Chem., 759, 95-100 (2015). https://doi.org/10.1016/j.jelechem.2015.10.038