• Title/Summary/Keyword: $Mg_2Ca$ phase

Search Result 279, Processing Time 0.032 seconds

Synthesis and Hardness of Glass Ceramics for Dental Crown Prosthetic Application in the system CaO-MgO-SiO2-P2O5-TiO2 (치관 보철용 CaO-MgO-$SiO_2-P_2O_5-TiO_2$계 글라스 세라믹의 합성과 경도)

  • Chung, In-Sung;Kim, Kap-Jin;Cheong, HO-Keun;Lee, Jong-Il
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 1999
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-$P_2O_5-TiO_2$ glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature, holding time and chemical composition in relation to mechinical properties. Crystallization peak temperatures were determined by differential thermal analysis(DTA). Crystalline phases and mircostructures of heat-treated sample were determined by the means of powder X-ray diffraction(XRD) and scanning electron microscopy(SEM). The final crystalline phase assemblages and the microstructures of the samples were found to be dependent on glass compositions, heattreatment temperature, and holding time. 1st crystallization peak temperature(TP), affected strongly by apatite, was found to be increased or decreased. From the experiment, the following results were obtained : 1. The crystallization peak temperature($T_P$) formed by apatite increased until adding up to 9wt% $TiO_2$ to base glass composition, then decreased above that. 2. Apatite($Ca_{10}P_6O_{25}$), whitlockite(${\beta}-3CaO-P_2O_5$), $\beta$-wollastonite($CaSiO_3$), magnesium tianate($MaTiO_3$) and diopside(CaO-MgO-$2SiO_2$) crystal phase were precipitated in MgO-CaO-$SiO_2-TiO_2-P_2O_5$ glass system containing 9wt% and 11wt% of $TiO_2$ 3. Vickers hardness of samples increased with increasing heat-treatment temperature and Vickers hardness of S415T9 samples heat-treated at 1075 was approxi-mately 813Kg $mm^{-2}$ as maximum value. 4. Vickers hardness of samples increased due to precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix.

  • PDF

Thermal properties of glass-ceramics made with zircon and diopside powders

  • Lee, Dayoung;Kang, Seunggu
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.504-508
    • /
    • 2018
  • Diopside is a ceramic material with excellent physical and chemical properties. However, when it is applied as an LED packaging material, heat dissipation of the LED element is not sufficient due to its relatively lower thermal conductivity, which may cause degradation of the LED function. In this study, glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system, in which diopside is the main crystal phase, were prepared by heat-treating the glass, which was composed of zircon ($ZrO_2-SiO_2$) powders and diopside ($CaO-MgO-2SiO_2$) powders. The possibility of using the glass-ceramics as a packaging material for LEDs was then investigated by analyzing the density, shrinkage, thermal conductivity, and phases generated according to the amount of zircon powder added. The density and shrinkage of specimens decreased slightly and then increased again with the amount of $ZrO_2-SiO_2$ added within a range of 0~0.38 mol. Even though the crystal phase of zircon does not appear in the $ZrO_2-CaO-MgO-SiO_2$ system, the glass containing 0.38 mol zircon powder showed the highest thermal conductivity, 1.85 W/mK, among the specimens fabricated in this study: this value was about 23% higher than that of pure diopside. It was found that the thermal conductivity of the glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system was closely related to the density, but not to the phase type. Zirconia ($ZrO_2$), a component oxide of zircon, plays an important role in increasing the density of the specimen. Furthermore the thermal conductivity of glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system showed a nearly linear relationship with thermal diffusivity.

Behavior of Isolated Pores during Liquid Phase Sintering of $MgO-CaMgSiO_4$ System ($MgO-CaMgSiO_4$ 계 액상소결중의 고립기공거동)

  • 송병무;김정주;김도연
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 1985
  • A theoretical model describing the behavior of isolated pores during liquid phase sintering was developed and the experimental results obtained by the $80MgO-CaMgSiO_4$ specimens were given. Most of isolated pores once formed in the interior of specimen were not eliminated because the pressure of trapped non-diffusable gas in the pore like $N_2$ increases very rapidly with pore volume contraction. As sint-ering time increase it was observed that the number of pores decreases whereas the average size of pore increases. This phenomenon was interpreted in terms of the MgO growth during sintering which results in the coalescence of isolated pores. The increase of pore size resulting from pore coalescence was attributed to the main cause of the overfiring phenomena ; the higher sintering temperature or a long time sintering leads to a decrease in density.

  • PDF

Effect of metal oxides on the types of SiO$_2$ Phase of vitreous porcelain body (금속 산화물이 도자기 소지중 SiO$_2$상 생성에 미치는 영향)

  • 김윤주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.658-664
    • /
    • 1997
  • The effect of metal oxides($K_2O, MgO, CaO,Al_2O_3$, and $TiO_2$) on the kinds of pure $SiO_2$ phase, and $SiO_2$ phases in the composition of vitreous porcelain body was investigated. Also, the effect of the ratio $SiO_2$ to $Al_2O_3$ in the composition of porcelain body with stabilized of cristobalite phase was investigated. In the case of the addition of $K_2O, MgO, CaO, Al_2O_3$, and $TiO_2$ to pure $SiO_2$, the major phase was $\alpha$-cristobalite, $\alpha$-cristobalite, $\alpha$-quartz, $\alpha$-quartz and amorphous, respectively. As the ratio of $SiO_2$ to $Al_2O_3$ in the composition of porcelain body was decreased, the stabilization of cristobalite phase was promoted and only the critical value of $SiO_2/Al_2O_3$ ratio that stabilizing the cristobalite phase in it was 68.10/22.75. The addition of $K_2$O, MgO, CaO,Al_2O_3$, and $TiO_2$ to the composition of porcelain body stabilized already did not affect on the formation of $\alpha$-cristobalite phase which degraded the thermal properties of porcelain body, and suppressed the formation of a, $\beta$-cristobalite.

  • PDF

Effects of Ca, Si on the Microstructure and Aging Characteristic of AZ91 Alloy (AZ91합금의 조직(組織)과 시효특성(時效特性)에 미치는 Ca 및 Si의 영향(影響))

  • Jhee, T.G.;Kim, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.6
    • /
    • pp.260-268
    • /
    • 2002
  • The effects of calcium and silicon on microstructure and aging characteristics of AZ91 magnesium alloy during T5 treatment was investigated. The addition of 0.88% calcium or 0.25% silicon to AZ91 alloy made dendrite cell smaller. Especially, silicon is more effectively acted as refinement of the dendrite cell than calcium. It is due to that $Mg_2Si$ precipitated at the dendrite cell boundary or in the matrix during T5 treatment of Si added AZ91 alloy retarded the growth of the secondary phase. In the mean while, without inducing the precipitates containing calcium, calcium was segregated mainly around secondary phase such as $Mg_{17}Al_{12}$ and partially dissolved in ternary eutectic (Mg-Al-Ca) structure. In the AZ91 alloy containing both silicon and calcium, more finely distributed $Mg_2Si$ in matrix homogeneously and much finer microstructure were obtained than those containing silicon or calcium. Hence, An AZ91 containing both silicon and calcium was more effective to retarding the growth of the secondary phase than the other AZ91 alloy such as AZ91 alloy containing silicon or AZ91 alloy containing calcium.

Solubilization of BSA into AOT Reverse Micelles Using the Phase-Transfer Method: Effects of pH and Salts (상 접촉법을 이용한 BSA의 AOT 역미셀으로 가용화: pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Bovine serum albumin(BSA) was solubilized into the reverse micellar phase consisting of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and isooctane using the phase transfer method. Of particular interest in this study were the effects of pH and the added salt type and concentration on the solubilization efficiency. When univalent or divalent salts such as KCl, NaCl, $MgCl_2$, or $CaCl_2$ were added to the aqueous phase at a concentration of 0.1 M, maximum solubilization efficiency was attained at a pH ranging from 5 to 7, depending on the added salt type. Increased salt concentration up to 1 M resulted in an increased solubilization efficiency for $CaCl_2$ and NaCl, while the addition of $MgCl_2$ beyond 0.1 M showed an anomalous trend. Further, it was noteworthy that too a large extent the protein precipitated in the interface between the organic and aqueous phases at lower pHs and lower salt concentrations. The size of the reverse micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, $W_0$. Irrespective of pH in the aqueous phase, the resulting value of $W_0$ was almost constant, eg., 20 for $MgCl_2$ . However, the value of $W_0$ decreased with increased salt concentration in the cases of KCl and $CaCl_2$.

  • PDF

Microstructures and Mechanical Properties of Diecast 0.7wt% CaO added Eco-Mg Parts (0.7wt% CaO 첨가 AZ91D Eco-Mg 다이캐스팅 부품의 미세조직 및 기계적 특성)

  • Seo, Jung-Ho;Lim, Hyun-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.224-230
    • /
    • 2010
  • To prevent oxidation of Mg melt, $SF_6$ gas has been generally used for Mg alloys during melting and casting as a cover gas. The use of $SF_6$ gas, however, will be restricted owing to its crucial impact on global warming. Non-$SF_6$ process during melting and casting in diecasting industry has been proved with Eco-Mg alloys by a simple addition of small amount of CaO into Mg alloys. This paper shows non-$SF_6$ diecasting procedures for 0.7wt% CaO added AZ91D Eco-Mg alloys. Cold-chamber diecasting was performed under $CO_2$ atmosphere without $SF_6$ gas. An increment of mechanical properties, especially strength and ductility of Eco-Mg alloys is, in part, due to high-quality melt, refined grain size and $Al_2Ca$ second phase strengthening. Microstructures and mechanical properties of 0.7wt% CaO added AZ91D Eco-Mg alloys are evaluated in comparison with those of conventional AZ91D Mg alloy.

Superconducting Properties of the Mg-Bi(Pb)SrCaCuO (110 K Phase) Composite System focusing on the Microstructure (Mg가 혼합된 Bi(Pb)SrCaCuO(110 K 상) 고온초전도체의 미세구조에 따른 초전도 특성 변화에 대한 연구)

  • 이정화;최봉수;이민수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.530-538
    • /
    • 2003
  • Samples with the nominal composition, B $i_{1.84}$P $b_{0.34}$S $r_{1.91}$C $a_{2.03}$C $u_{3.06}$ $O_{10+}$$\delta$/ (110 K phase) high $T_{C}$ superconductors containing MgO as an additive were fabricated by a solid-state reaction method. Samples with 5~50 wt% MgO were sintered at 820~86$0^{\circ}C$ for 24 h. The structural characteristics, critical temperature and grain size of the samples with different MgO contents were analyzed by XRD and SEM. As the MgO content increased, the intensity of MgO peaks and ratio of Bi-2212 phase in superconductors were intensified and the proportion of the phase transition from Bi-2223 to Bi-2212 was increased.d.creased.d.

Glass Forming Ability and Characteristic Evaluation in Ca-Mg-Zn Alloy System (Ca-Ma-Zn 합금계에서 비정질 형성능 및 특성 평가)

  • Park, Eun-Soo;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • The effect of alloy composition on the glass forming ability (GFA) of the Ca-rich Ca-Mg-Zn alloys has been investigated in $Ca_{65}Mg_{5+x}Zn_{30-x}$ and $Ca_{55+x}Mg_{15}Zn_{30-x}$ (x=0, 5, 10, 15, 20) alloys. In a wide composition range of 15-25% Zn and 10-20% Mg bulk metallic glass (BMG) samples with the diameter larger than 6 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the alloys investigated, the $Ca_{65}Mg_{15}Zn_{20}$ alloy exhibits the highest GFA enabling to form BMG sample with the diameter of at least 15 mm. The crystalline phase formed during solidification of $Ca_{65}Mg_{15}Zn_{20}$ ($D_{max}=15\;mm$) could be identified as a mixture of $Ca_3Zn$ and $CaMg_2$ cause by the redistribution of the constituent elements on long-range scale. The compressive fracture strength and fracture elongation of the $Ca_{65}Mg_{15}Zn_{20}$ BMG are 602 MPa and 2.08% respectively. The ${\sigma}$ parameter which has been recently proposed for evaluating GFA exhibits better correlation with GFA of Ca-Mg-Zn alloys than other parameters suggested so far such as ${\Delta}T_x$, $T_{rg}$, K, ${\gamma}$, and ${\Delta}T^*$ parameters.

Microstructure and Mechanical Properties of Mg-Li Powder by Hot Rolling Process

  • Choi, Jeong-Won;Kim, Yong-Ho;Kim, Jung-Han;Yoo, Hyo-Sang;Woo, Kee-Do;Kim, Ki-Beom;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • Hot rolling of Mg-6Zn-0.6Zr-0.4Ag-0.2Ca-(0, 8 wt%)Li powder was conducted at the temperature of $300^{\circ}C$ by putting the powder into the Cu pipe. The microstructure and mechanical properties of the samples were observed. Mg-6Zn-0.6Zr-0.4Ag-0.2Ca without Li element was consisted of ${\alpha}$ phase and precipitates. The microstructure of the 8 wt%Li containing alloy consisted of two phases (${\alpha}$-Mg phase and ${\beta}$-Li phase). In addition, $Mg_2Zn_3Li$ was formed in 8%Li added Mg-6Zn-0.6Zr-0.4Ag-0.2Ca alloy. By addition of the Li element, the non-basal planes were expanded to the rolling direction, which was different from the based Mg alloy without Li. The tensile strength was gradually decreased from 357.1 MPa to 264 MPa with increasing Li addition from 0% to 8%Li. However, the elongation of the alloys was remarkably increased from 10 % to 21% by addition of the Li element to 8%. It is clearly considered that the non-basal texture and ${\beta}$ phase contribute to the increase of elongation and formability.