Glass Forming Ability and Characteristic Evaluation in Ca-Mg-Zn Alloy System

Ca-Ma-Zn 합금계에서 비정질 형성능 및 특성 평가

  • Park, Eun-Soo (Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University) ;
  • Kim, Won-Tae (Division of Applied Science, Cheongju University) ;
  • Kim, Do-Hyang (Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University)
  • 박은수 (연세대학교 신소재공학과, 준결정재료연구단) ;
  • 김원태 (청주대학교 응용과학부) ;
  • 김도향 (연세대학교 신소재공학과, 준결정재료연구단)
  • Published : 2006.04.20

Abstract

The effect of alloy composition on the glass forming ability (GFA) of the Ca-rich Ca-Mg-Zn alloys has been investigated in $Ca_{65}Mg_{5+x}Zn_{30-x}$ and $Ca_{55+x}Mg_{15}Zn_{30-x}$ (x=0, 5, 10, 15, 20) alloys. In a wide composition range of 15-25% Zn and 10-20% Mg bulk metallic glass (BMG) samples with the diameter larger than 6 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the alloys investigated, the $Ca_{65}Mg_{15}Zn_{20}$ alloy exhibits the highest GFA enabling to form BMG sample with the diameter of at least 15 mm. The crystalline phase formed during solidification of $Ca_{65}Mg_{15}Zn_{20}$ ($D_{max}=15\;mm$) could be identified as a mixture of $Ca_3Zn$ and $CaMg_2$ cause by the redistribution of the constituent elements on long-range scale. The compressive fracture strength and fracture elongation of the $Ca_{65}Mg_{15}Zn_{20}$ BMG are 602 MPa and 2.08% respectively. The ${\sigma}$ parameter which has been recently proposed for evaluating GFA exhibits better correlation with GFA of Ca-Mg-Zn alloys than other parameters suggested so far such as ${\Delta}T_x$, $T_{rg}$, K, ${\gamma}$, and ${\Delta}T^*$ parameters.

Keywords

References

  1. Y. J. Kim, R. Busch, W.L. Johnson, and A. J. Rulison, Appl. Phys. Lett., 'Metallic glass formation in highly undercooled $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10.0}Be_{22.5}$ during containerless electrostatic levitation processing', 65 (1994) 2136-2138 https://doi.org/10.1063/1.112768
  2. N. Nishiyama and A. Inoue, Mater. Trans. JIM., 'Flux treated Pd-Cu-Ni-P amorphous alloy having low critical cooling rate', 38 (1997) 464-472 https://doi.org/10.2320/matertrans1989.38.464
  3. J.-H. Kim, J. S. Park, E. S. Park, W. T. Kim, and D. H. Kim, Met. Mater.-Int., 'Simplified estimation for critical cooling rates for glass formation in bulk metallic glasses through non-isothermal thermal analysis', 11 (2005) 1-9 https://doi.org/10.1007/BF03027478
  4. A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, Acta Mater., 'High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems', 49 (2001) 2645 https://doi.org/10.1016/S1359-6454(01)00181-1
  5. A. Inoue, W. Zhang, Mater. Trans. JIM., 'Formation, thermal stability and mechanical properties of Cu-Zr-Al Bulk Glassy Alloys', 43 (2002) 2921-2925 https://doi.org/10.2320/matertrans.43.2921
  6. D. S. Sung, O. J. Kwon, E. Fleury, K. B. Kim, J. C. Lee, D. H. Kim, and Y. C. Kim, Met. Mater.-Int., 'Enhancement of the glass forming ability of Cu-Zr-Al alloys by Ag addition', 10 (2004) 575-579 https://doi.org/10.1007/BF03027421
  7. H. Choi-Yim, D. H. Xu, and W.L. Johnson, Appl. Phys. Lett., 'Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X = B, Fe, Cu) alloy systems', 82 (2003) 1030-1032 https://doi.org/10.1063/1.1544434
  8. W. Zhang, A. Inoue, Mater. Trans. JIM., 'Effects of Ti on the Thermal Stability and Glass-Forming Ability of Ni-Nb Glassy Alloy', 43 (2002) 2342-2345 https://doi.org/10.2320/matertrans.43.2342
  9. M. H. Lee, D. H. Bae, W.T. Kim, D. H. Kim, Mater. Trans. JIM., 'Ni-based refractory bulk amorphous alloys with high thermal stability', 44, (2003) 2084-2087 https://doi.org/10.2320/matertrans.44.2084
  10. A. Inoue, T. Nakamura, N. Nishiyama, and T. Masumoto, Mater. Trans. JIM., 'Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method', 33 (1992) 937-945 https://doi.org/10.2320/matertrans1989.33.937
  11. H. Men and D. H. Kim, J. of Mater. Res., 'Fabrication of ternary Mg-Cu-Gd bulk metallic glass with high glassforming ability under air atmosphere', 18 (2003) 1502 https://doi.org/10.1557/JMR.2003.0207
  12. H. A. Davies, 'Amorphous metallic alloys', F. E. Luborsky (Ed.), Butterworths, London (1993) 8
  13. A. Hruby, Czech. J. Phys. B, 'Evaluation of glass-forming tendency by means of DTA', 22, 1187 (1972)
  14. Z. P. Lu and C. T. Liu, Acta Mater., 'A new glass-forming ability criterion for bulk metallic glasses', 50, 3501 (2002) https://doi.org/10.1016/S1359-6454(02)00166-0
  15. E. S. Park, W. T. Kim, and D. H. Kim, Appl. Phys. Lett., 'Parameter for glass forming ability of ternary alloy systems', 86 (2005) 061907-061909 https://doi.org/10.1063/1.1862790
  16. I. W. Donald and H. A. Davies, J. Non-Cryst. Solids, 'Prediction of glass-forming ability for metallic systems', 30 (1978) 77-85 https://doi.org/10.1016/0022-3093(78)90058-3
  17. E. S. Park, W. T. Kim, and D. H. Kim, Metall. & Mater. Trans., 'A simple model for alloy composition with large glass forming ability in ternary alloys', 32A (2001) 200-202
  18. A. Calka, M. Madhva, D. E. Polk, B. C. Geissen, H. Matyja, J.B. Vander Sande, Scripta Metall., 'A transition-metal-free amorphous alloy: $Mg_{70}Zn_{30}$', 11 (1977) 65-70 https://doi.org/10.1016/0036-9748(77)90015-1
  19. R. St. Amand and B. C. Giessen, Scripta Mater., 'Easy glass formation in simple metal alloys: Amorphous metals containing calcium and strontium', 12 (1978) 1021-1026 https://doi.org/10.1016/0036-9748(78)90017-0
  20. M. Tegze and J. Hafner, J. Non-cryst. Solids, 'Structural and electronic properties of Ca-Zn glasses', 117-118 (1990) 195-198
  21. K. Amiya and A. Inoue, Mater. Trans. JIM., 'Formation, thermal stability and mechanical properties of Ca-based bulk glassy alloys', 43 (2002) 81-84 https://doi.org/10.2320/matertrans.43.81
  22. K. Amiya and A. Inoue, Mater. Trans. JIM, 'Formation and thermal stability of Ca-Mg-Ag-Cu bulk glassy alloys', 43 (2002) 2578-2581 https://doi.org/10.2320/matertrans.43.2578
  23. E. S. Park and D. H. Kim, J. Mater. Res., 'Formation of CaMg- Zn bulk glassy alloy by casting into cone-shaped copper mold', 19 (2004) 685-687 https://doi.org/10.1557/jmr.2004.19.3.685
  24. E. S. Park and D. H. Kim, Met. Mater.-Int. Met. Mater.-Int., 'Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites', 11 (2005) 19-27 https://doi.org/10.1007/BF03027480
  25. E. S. Park and D. H. Kim, Appl. Phys. Lett., 'Effect of atomic configuration and liquid stability on the glass forming ability of Ca-based metallic glasses', 86 (2005) 201912 https://doi.org/10.1063/1.1931832
  26. O. N. Senkov and J. M. Scott, Mater. Letters, 'Formation and thermal stability of Ca-Mg-Zn and Ca-Mg-Zn-Cu bulk metallic glasses', 58 (2004) 1375-1378 https://doi.org/10.1016/j.matlet.2003.09.030
  27. O. N. Senkov and J. M. Scott, Scripta Mater., 'Specific criteria for selection of alloy compositions for bulk metallic glasses', 50 (2004) 449-452 https://doi.org/10.1016/j.scriptamat.2003.11.004
  28. F. Q. Guo, S. J. Poon, and G. J. Shiflet, Appl. Phys. Lett., 'CaAl-based bulk metallic glasses with high thermal stability', 84 (2004) 37-39 https://doi.org/10.1063/1.1637940
  29. A. Inoue, T. Zhang, and T. Masumoto, J. Non-cryst. Solids, 'Glass-forming ability ofalloys', 156-158 (1993) 473
  30. P. Villars, A. Prince, and H. Okamoto, eds., Handbook of Ternary Alloy Phase Diagrams, 6 (ASM, Materials Park, OR, 1995) 7522
  31. A. Inoue, T. Negishi, H. M. Kimura, T. Zhang, and R. Yavari, Mater. Trans. JIM., 'High packing density of Zr- and Pd-based bulk amorphous alloys', 39 (1998) 318-321 https://doi.org/10.2320/matertrans1989.39.318