DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Mg-Li Powder by Hot Rolling Process

  • Choi, Jeong-Won (Automotive Components & Materials R&BD Group Korea Institute of Industrial Technology) ;
  • Kim, Yong-Ho (Automotive Components & Materials R&BD Group Korea Institute of Industrial Technology) ;
  • Kim, Jung-Han (Automotive Components & Materials R&BD Group Korea Institute of Industrial Technology) ;
  • Yoo, Hyo-Sang (Automotive Components & Materials R&BD Group Korea Institute of Industrial Technology) ;
  • Woo, Kee-Do (Division of Advanced Materials Engineering & RCAMD, Chonbuk National University) ;
  • Kim, Ki-Beom (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Son, Hyeon-Taek (Automotive Components & Materials R&BD Group Korea Institute of Industrial Technology)
  • Received : 2014.10.20
  • Accepted : 2014.12.10
  • Published : 2015.01.27

Abstract

Hot rolling of Mg-6Zn-0.6Zr-0.4Ag-0.2Ca-(0, 8 wt%)Li powder was conducted at the temperature of $300^{\circ}C$ by putting the powder into the Cu pipe. The microstructure and mechanical properties of the samples were observed. Mg-6Zn-0.6Zr-0.4Ag-0.2Ca without Li element was consisted of ${\alpha}$ phase and precipitates. The microstructure of the 8 wt%Li containing alloy consisted of two phases (${\alpha}$-Mg phase and ${\beta}$-Li phase). In addition, $Mg_2Zn_3Li$ was formed in 8%Li added Mg-6Zn-0.6Zr-0.4Ag-0.2Ca alloy. By addition of the Li element, the non-basal planes were expanded to the rolling direction, which was different from the based Mg alloy without Li. The tensile strength was gradually decreased from 357.1 MPa to 264 MPa with increasing Li addition from 0% to 8%Li. However, the elongation of the alloys was remarkably increased from 10 % to 21% by addition of the Li element to 8%. It is clearly considered that the non-basal texture and ${\beta}$ phase contribute to the increase of elongation and formability.

Keywords

References

  1. Mendis C, Oh-ishi K, Ohkubo T and Hono K, Mater. Sci. Eng. A, 535, 122 (2012). https://doi.org/10.1016/j.msea.2011.12.051
  2. H. T. Son, Y. H. Kim, J. H. Kim and H. S. Yoo, J. Alloys Compd., 564, 130 (2013). https://doi.org/10.1016/j.jallcom.2013.02.157
  3. Yamamoto A, Ashida T, Kouta Y and Kim KB, Mater. Trans., 44(4), 619 (2003). https://doi.org/10.2320/matertrans.44.619
  4. Vinod Kumar, Govind, Rajiv Shekhar, R. Balasubramaniam and Kantesh Balani, Mater. Sci. Eng. A, 547, 38 (2012). https://doi.org/10.1016/j.msea.2012.03.074
  5. T. C. Chang, J. Y. Wang, C. L. Chu and S. Lee, Mater. Lett., 60, 3272 (2006). https://doi.org/10.1016/j.matlet.2006.03.052
  6. Q. Miao, L. X. Hu, H. F. Sun and E. D. Wang, Trans. Nonferrous Met. Soc. China, 19, s326 (2009). https://doi.org/10.1016/S1003-6326(10)60063-5
  7. H. K. Lim, D. H. Kim, J. Y. Lee, W. T. Kim and D. H. Kim, J. Alloys Compd., 468, 308 (2009) https://doi.org/10.1016/j.jallcom.2007.12.098
  8. Mendis C, Oh-iShi K and Hono K, Scripta Mater., 57, 485 (2007). https://doi.org/10.1016/j.scriptamat.2007.05.031
  9. Mendis C, Oh-iShi K, Kawamura Y, Honma T, Kamado S and Hono K, Acta Mater., 57, 749 (2009). https://doi.org/10.1016/j.actamat.2008.10.033
  10. H. W. Dong, L. D. Wang, Y. M. Wu and L. M. Wang, J. Alloys Compd., 506, 468 (2010). https://doi.org/10.1016/j.jallcom.2010.07.032
  11. H. Yan, R. S. Chen, E. H. Han, Trans. Nonferrous Met. Soc. China 20, s550 (2010). https://doi.org/10.1016/S1003-6326(10)60536-5
  12. B. Ziang, Z. Wu and M. Zhang, J. Alloys Compd., 509, 1615 (2011). https://doi.org/10.1016/j.jallcom.2010.11.049
  13. M. Li, H. Hao, A. Zhang, Song Y and Zhang X, J. Rare Earth, 30(5), 492 (2012). https://doi.org/10.1016/S1002-0721(12)60078-7
  14. L. L. Chang, J. H. Cho and S. B Kang., J. Mater. Process. Tech., 211, 1527 (2011). https://doi.org/10.1016/j.jmatprotec.2011.04.003
  15. T. C. Chang, J. Y. Wang, C. M. O and S. Lee, J. Mater. Process. Tech., 140, 588 (2003). https://doi.org/10.1016/S0924-0136(03)00797-0