• Title/Summary/Keyword: $LiMn_{2}O_{4}$

Search Result 354, Processing Time 0.031 seconds

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor (연소합성법에 의한 결함구조 Li4Mn5O12제조와 하이브리드 커패시터 적용)

  • Kim, Hun-Uk;Sun, Yang-Kook;Lee, Bum-Suk;Jin, Chang-Soo;Shin, Kyoung-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • $Li_4Mn_5O_{12}$ was synthesized by combustion method using $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ and $Mn(CH_3COO)_2{\cdot}4H_2O$. $Li_4Mn_5O_{12}$ was obtained over $400^{\circ}C$, however, the sample calcined at $400^{\circ}C$ for any time was mixed phases of $Li_4Mn_5O_{12}$ and $Mn_2O_3$. $Li_4Mn_5O_{12}$ calcined at $400^{\circ}C$ for 5 h had larger first discharge capacity (41.5mAh/g) at 1C-rate for 3.7~4.4V than other calcined samples. Moreover, applying to hybrid capacitor, it had good discharge capacity (24.74 mAh/g or 10.46 mAh/cc) at 100 mA/g for 1~2.5 V and higher energy density (39Wh/kg or 16.49Wh/cc) at same condition.

Properties Changing depends on Substituents or Dopants of Li-Mn oxide material (Li-Mn계 산화물의 치환 및 첨가에 따른 물성 변화)

  • Lee, Dae-Jin;Ji, Mi-Jung;Choi, Byung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.289-289
    • /
    • 2007
  • Spinel structured $LiMn_2O_4$ is more economic and environmental friendly to be used as commercial active material for secondary battery compared to Co-oxide material active material, but spinel structure of $LiMn_2O_4$ is unstable and its capacitance decreases with increase of cycle. Therefore, the purpose of our sturdy is to improve the stability of $LiMn_2O_4$ spinel structure and increase its capacitance by using substituents or dopants. $LiMn_2O_4$ powder was synthesized by charging substituents or dopants mole fractions, and temperatures. Crystal state, structure and specific surface area of the synthesized powder were measured and also characteried electrochemically by measuring its impedance, charge-discharge capacitance and etc.

  • PDF

Electrochemical Properties of Spinel $LiMn_2O_4$ Synthesized at Various Heat Treatment for Lithium lon Battery (리튬 이온 전지용 스피넬 $LiMn_2O_4$의 열처리 온도에 따른 전기 화학적 특성)

  • Han, Tae-Hee;Min, Hyung-Sik;Han, Byoung-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.179-184
    • /
    • 1999
  • In the past ten years, $LiMn_2O_4$-based spinels have been extensively studied as positive electrode materials for lithium-ion batteries. To improve the cycle performance of spinel $LiMn_2O_4$ as the cathode of 4V class lithium secondary batteries, spinel phases $LiMn_2O_4$ were prepared at various temperatures ranging form 600-900$^{\cire}C$ in air. The results showed that charge.dischare capacity of $LiMn_2O_4$ varied at 1st temperature from $200^{\circ}C to 600^{\circ}C$ increase with increasing temperature. $LiMn_2O_4$ synthesized at 2nd temperature $750^{\circ}C$excellent charge.discharge capacity, efficiency and cyclability compared to the samplesynthesized different temperatures. The value of lst charge.discharge capacity was 121mAh/g, 118mAh/g, Also, the efficiency value was about 97%.

  • PDF

Effects of Reaction Parameters on the Preparation of LiMn2O4 for Lithium-Ion Batteries by SHS (리튬이온전지용 LiMn2O4분말의 자전연소합성시 반응변수의 영향)

  • Jang, Chang-Hyun;Nersisyan Hayk;Won, Chang-Whan;Kwon, Hyuk-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.588-593
    • /
    • 2006
  • Spinel phase $LiMn_2O_4$ is of great interest as cathode materials for lithium-ion batteries. In this study, SHS (Self propagating High-temperature Synthesis) method to synthesize spinel $LiMn_2O_4$ directly from lithium nitrate, manganese oxide, manganese and sodium chloride were investigated. The influence of Li/Mn ratio, the heat-treated condition of product have been explored. The resultant $LiMn_2O_4$ synthesized under the optimum synthesis conditions shows perfect spinel structure, uniform particle size and excellent electrochemical performances.

Electrochemical Characteristics of LiMnO2 for Lithium Secondary Battery

  • Jin Bo;Jun Dae-Kyoo;Gu Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.76-80
    • /
    • 2006
  • Well-defined orthorhombic $LiMnO_2\;and\;LiCo_{0.1}Mn_{0.9}O_2$ were synthesized by a solid-state reaction and quenching process. X-ray diffraction (XRD) results revealed that the as-synthesized powders showed an orthorhombic phase of a space group with Pmnm. The $Li/LiMnO_2\;and\;Li/LiCo_{0.1}Mn_{0.9}O_2$ cells were constituted and cycled galvanostatically in the voltage range of 2.0-4.3 V vs. $Li/Li^+$ at a current density of $0.5\;mA\;cm^{-2}$ at room temperature and $50^{\circ}C$, respectively. The results demonstrated that the highest specific capacity of $Li/LiMnO_2$ cells at room temperature and $50^{\circ}C$ was 95 and $155\;mAh\;g^{-1}$, respectively. As for $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells, the highest specific capacity at room temperature and $50^{\circ}C$ was 160 and $250\;mAh\;g^{-l}$, respectively. It could be seen that the performance of $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells was better than that of $Li/LiMnO_2$ cells.

Electrochemical Characteristics of $LiMn_2O_4$+Activated Carbon Electrode for Supercapacitor (Supercapacitor용 $LiMn_2O_4$+Activated Carbon 전극의 전기화학적 특성)

  • Jeon, Min-Je;Lee, Sun-Young;Kim, Ick-Jun;Moon, Seong-In;Im, Young-Tek;Lee, Sang-Hyun;Lee, Moon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.595-596
    • /
    • 2005
  • This research which it sees adds $LiMn_2O_4$ in the activated carbon electrode the test against the effect which it follows is. Test cells, which were $LiMn_2O_4$fabricated with active mass composite consisted of (100-X)% of MSP-20 and (X)% of $LiMn_2O_4$ (X=20,40,60,80,100), exhibits the better specific capacitance than those of the cells fabricated with single active mass that is MSP-20. The enhanced properties of composite active mass could be caused by capability of $LiMn_2O_4$ powders. But the resistance was increase by proportionate in $LiMn_2O_4$ addition and when mixture ratio of the activated carbon and the $LiMn_2O_4$ being similar, to be low rather to the after where had become the maximum it came.

  • PDF

The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg) ($LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성)

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

Properties of Al Doped LiMn2O4 Powders Prepared by Spray Pyrolysis Process (분무열분해 공정에 의해 합성된 Al이 치환된 LiMn2O4 분말의 특성)

  • Ju, Seo Hee;Jang, Hee Chan;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.84-88
    • /
    • 2009
  • Al doped $LiMn_2O_4$ cathode powders with fine size were synthesized by an ultrasonic spray pyrolysis method from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into $LiMn_{11/6}Al_{1/6}O_4$ powders with micron size and regular morphology after post-treatment above $800^{\circ}C$. The $LiMn_{11/6}Al_{1/6}O_4$ powders had low initial discharge capacity of 94 mAh/g at a post-treatment temperature of $700^{\circ}C$. As the post-temperature increased from $750^{\circ}C$ to $1,000^{\circ}C$, the initial discharge capacities of the $LiMn_{11/6}Al_{1/6}O_4$ powders changed from 103 to 117 mAh/g. The $LiMn_{11/6}Al_{1/6}O_4$ powders had the maximum discharge capacity at a post-treatment temperature of $750^{\circ}C$. However, the $LiMn_{11/6}Al_{1/6}O_4$ powders post-treated at a temperature of $900^{\circ}C$ had the good cycle properties. The discharge capacities of the $LiMn_{11/6}Al_{1/6}O_4$ powders dropped from 107 to 100 mAh/g (93% capacity retention) by the 70th cycle at a current density of 0.1 C.

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method (착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가)

  • Sin, Jae-Ho;Kim, Jin-Ho;Hwang, Hae-Jin;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.194-199
    • /
    • 2012
  • The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.