DOI QR코드

DOI QR Code

Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor

연소합성법에 의한 결함구조 Li4Mn5O12제조와 하이브리드 커패시터 적용

  • 김훈욱 (한양대학교 에너지공학과) ;
  • 선양국 (한양대학교 에너지공학과) ;
  • 이범석 (한국에너지기술연구원 변환저장소재연구센터) ;
  • 진창수 (한국에너지기술연구원 변환저장소재연구센터) ;
  • 신경희 (한국에너지기술연구원 변환저장소재연구센터)
  • Received : 2010.02.01
  • Accepted : 2010.03.31
  • Published : 2010.05.31

Abstract

$Li_4Mn_5O_{12}$ was synthesized by combustion method using $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ and $Mn(CH_3COO)_2{\cdot}4H_2O$. $Li_4Mn_5O_{12}$ was obtained over $400^{\circ}C$, however, the sample calcined at $400^{\circ}C$ for any time was mixed phases of $Li_4Mn_5O_{12}$ and $Mn_2O_3$. $Li_4Mn_5O_{12}$ calcined at $400^{\circ}C$ for 5 h had larger first discharge capacity (41.5mAh/g) at 1C-rate for 3.7~4.4V than other calcined samples. Moreover, applying to hybrid capacitor, it had good discharge capacity (24.74 mAh/g or 10.46 mAh/cc) at 100 mA/g for 1~2.5 V and higher energy density (39Wh/kg or 16.49Wh/cc) at same condition.

$LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ 그리고 $Mn(CH_3COO)_2{\cdot}4H_2O$를 출발물질로 하여 $Li_4Mn_5O_{12}$를 합성 하였으며 합성방법은 연소합성법을 사용하였다. $Li_4Mn_5O_{12}$$400^{\circ}C$ 이상의 열처리 온도에서 얻을 수 있었으나 $400^{\circ}C$로 열처리 하였을 때 $Mn_2O_3$가 같이 존재하는 것을 관찰할 수 있었다. $400^{\circ}C$에서 5시간동안 열처리한 $Li_4Mn_5O_{12}$를 3.7~4.4 V의 전압범위에서 1C-rate로 충방전 하였을 때 가장 좋은 첫 번째 방전용량(41.5 mAh/g)을 나타내었다. 이것을 하이브리드 커패시터에 적용하였을 때 100 mA/g의 전류밀도에서 24.74 mAh/g (10.46 mAh/cc)의 방전용량을 나타내었으며 이때의 에너지 밀도는 39 Wh/kg (16.49Wh/cc)으로 우수하였다.

Keywords

References

  1. B. E Conway, “Electrochemical Supercapacitors”, Kluwer Academic/Plenum Publishers, New York (1999).
  2. B. E. Conway, ‘Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage’ J. Electrochem. Soc., 138, 1539 (1991). https://doi.org/10.1149/1.2085829
  3. J. N. Broughton and M. J. Brett, ‘Investigation of thin sputtered Mn films for electrochemical capacitors’ Electrochim. Acta, 49, 4439 (2004). https://doi.org/10.1016/j.electacta.2004.04.035
  4. A. D. Pasquier, I. Plitz, J. Gural, S. Menocal, and G. Amatucci, ‘Characteristics and performance of 500F asymmetric hybrid advanced supercapacitor prototypes’ J. Power Sources, 113, 62 (2003). https://doi.org/10.1016/S0378-7753(02)00491-3
  5. A. D. Pasquier, A. Laforgue, and P. Simon, ‘$Li_4Ti_5O_{12}$/ poly(methyl)thiophene asymmetric hybrid electrochemical device’ J. Power Sources, 125, 95 (2004). https://doi.org/10.1016/j.jpowsour.2003.07.015
  6. Y. G. Wang, J. Y. Lou, W. Wu, C. X. Wang, and Y. Y. Wang, ‘Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: III. Capacity fading mechanism of $LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_2$ at different pH electrolyte solutions’ J. Electrochem. Soc., 154, A228 (2007). https://doi.org/10.1149/1.2432056
  7. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, K. Y. Ahn, K. H. Oh, and K. B. Kim, ‘A novel concept of hybrid capacitor based on manganese oxide materials’ Electrochem. Comm., 9, 2807 (2007). https://doi.org/10.1016/j.elecom.2007.09.015
  8. J. H. Yoon, H. J. Bang, J. Prakash, and Y. -k. Sun, ‘Comparative study of $Li[Ni_{1/3}Co_{1/3}Mn_{1/3}]O_2$ cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications’ Matt. Chem. Phy., 110, 222 (2008). https://doi.org/10.1016/j.matchemphys.2008.01.032
  9. Y. J. Hao, Y. Y. Wang, Q. Y. Lai, Y. Zhao, L. M. Chen, and X. Y. Ji, ‘Study of capacitive properties for LT-$Li_4Mn_5O_{12}$ in hybrid supercapacitor’ J. Solid State Electrochem., 13, 905 (2009). https://doi.org/10.1007/s10008-008-0627-y
  10. M. M. Thackeray, ‘Manganese oxides for lithium batteries’ Prog. in Solid State Chem., 25, 1 (1997). https://doi.org/10.1016/S0079-6786(97)81003-5
  11. Y. J. Shin and A. Manthiram, ‘Origin of the high voltage (> 4.5 V) capacity of spinel lithium manganese oxides’ Electrochim. Acta, 48, 3583 (2003). https://doi.org/10.1016/S0013-4686(03)00478-X
  12. T. Takada, H. Hayakawa, E. Akiba, F. Izumi, and B. C. Chakoumakos, ‘Novel synthesis process and structure refinements of $Li_4Mn_5O_{12}$ for rechargeable lithium batteries’ J. Power Sources, 68, 613 (1997). https://doi.org/10.1016/S0378-7753(96)02570-0
  13. Y. J. Park, Y.-S. Hong, X. Wu, K. S. Ryu, and S. H. Chang, ‘Structural investigation and electrochemical behaviour of $Li[Ni_xLi_{(1/32x/3)}Mn_{(2/3x/3)}]O_2$ compounds by a simple combustion method’, J. Power Sources, 129, 288 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.024
  14. M. J. Iqbal and S. Jahoor, ‘Synthesis and characterization of nanosized lithium manganate and its derivatives’, J. Power Sources, 165, 393 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.068
  15. G. A. Narzri and G. Pistoia, “Lithium batteries”, Kluwer Academic/Plenum Publishers, Boston (2004).
  16. T. Takada, H. Hayakawa, and E. Akiba, ‘Preparation and crystal structure refinement of $Li_4Mn_5O_{12}$ by the Rietveld method’ J. Solid State Chem., 115, 420 (1995). https://doi.org/10.1006/jssc.1995.1154
  17. T. Takada, H. Hayakawa, T. Kumagai, and E. Akiba, ‘Thermal stability and structural changes of $Li_4Mn_5O_{12}$ under oxygen and nitrogen atmosphere’ J. Solid State Chem., 121, 79 (1996). https://doi.org/10.1006/jssc.1996.0012
  18. Y. Xia, H. Takeshige, H. Noguchi, and M. Yoshio, ‘Studies on an Li-Mn-O spinel system (obtained by melt-impregnation) as a cathode for 4V lithium batteries; Part 1. Synthesis and electrochemical behaviour of $Li_xMn_2O_4$’ J. Power Sources, 56, 61 (1995).

Cited by

  1. Synthesis of Li2Mn3O7and Application to Hybrid Capacitor vol.1, pp.2, 2010, https://doi.org/10.5229/JECST.2010.1.2.097
  2. Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors vol.8, pp.3, 2018, https://doi.org/10.3390/jlpea8030032