• Title/Summary/Keyword: $Li_4Mn_5O_{12}$

Search Result 25, Processing Time 0.025 seconds

Synthesis of Defective-Structure Li4Mn5O12 by Combustion Method and Its Application to Hybrid Capacitor (연소합성법에 의한 결함구조 Li4Mn5O12제조와 하이브리드 커패시터 적용)

  • Kim, Hun-Uk;Sun, Yang-Kook;Lee, Bum-Suk;Jin, Chang-Soo;Shin, Kyoung-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.103-109
    • /
    • 2010
  • $Li_4Mn_5O_{12}$ was synthesized by combustion method using $LiNO_3$, $Li(CH_3COO){\cdot}2H_2O$ and $Mn(CH_3COO)_2{\cdot}4H_2O$. $Li_4Mn_5O_{12}$ was obtained over $400^{\circ}C$, however, the sample calcined at $400^{\circ}C$ for any time was mixed phases of $Li_4Mn_5O_{12}$ and $Mn_2O_3$. $Li_4Mn_5O_{12}$ calcined at $400^{\circ}C$ for 5 h had larger first discharge capacity (41.5mAh/g) at 1C-rate for 3.7~4.4V than other calcined samples. Moreover, applying to hybrid capacitor, it had good discharge capacity (24.74 mAh/g or 10.46 mAh/cc) at 100 mA/g for 1~2.5 V and higher energy density (39Wh/kg or 16.49Wh/cc) at same condition.

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

Synthesis of Li4/3Mn5/3O4 by Sol-Gel Process and its Electrochemical Properties (졸-겔법에 의한 Li4/3Mn5/3O4의 합성 및 전기화학적 특성)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.80-84
    • /
    • 1999
  • $Li_{4/3}Mn_{5/3}O_4$ having a defect structure was prepared by sol-gel process using lithium acetate and manganese acetate as starting materials, and their electrode characteristics in the lithium secondary battery was investigated. The reaction mole ratio was determined as $AA/Mn(OAc)_2$ of 0.2 and $NH_4OH/Mn(OAc)_2$ to $H_2O/Mn(OAc)_2$ of 0.4. The product was obtained through heat treatment at $350^{\circ}C$ for 12hrs after 1'st heat treatment at $150^{\circ}C$ of xerogel under oxygen atmosphere. When the charge and discharge cycles were performed between 2.0 V and 3.2 V, $Li/Li_{4/3}Mn_{5/3}O_4$ cell showed the dicharge capacity of 84.23 mAh/g and the good cycleability was obtained in the plateau region.

  • PDF

Effect of $Li_4Ti_5O_{12}$ coating layer on capacity retention of $LiMn_2O_4$ as cathode materials of lithium ion secondary batteries for HEV application (HEV용 리튬 이차전지 양극물질 $LiMn_2O_4$$Li_4Ti_5O_{12}$ 코팅에 따른 영향)

  • Wai, Yin-Loo;Choi, Byung-Hyun;Jee, Mi-Jung;Lee, Dae-Jin;Shin, Jae-Su;Song, Kwang-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.125-128
    • /
    • 2007
  • In these recent years, low cost and stable battery electrode materials have been studied for HV/HEV application. Spinel cathode material $LiMn_2O_4$ is widely studied as a promising cathode material of lithium ion secondary batteries because of it is low cost, easily to be prepared and capable to be operated in high voltage range. In this study, $LiMn_2O_4$ was undergoing surface modification with spinel lithium titanium oxide by sol-gel method in order to enhance its capacity retention. Properties of both unmodified and surface-modified $LiMn_2O_4$ were characterized by XRD, SEM, particle size analyzer while their cycling performance was tested with charge and discharge tester.

  • PDF

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Structural and Electrochemical Properties of Li2Mn0.5Fe0.5SiO4/C Cathode Nanocomposite

  • Chung, Young-Min;Yu, Seung-Ho;Song, Min-Seob;Kim, Sung-Soo;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4205-4209
    • /
    • 2011
  • The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ silicate was prepared by blending of $Li_2MnSiO_4$ and $Li_2FeSiO_4$ precursors with same molar ratio. The one of the silicates of $Li_2FeSiO_4$ is known as high capacitive up to ~330 mAh/g due to 2 mole electron exchange, and the other of $Li_2FeSiO_4$ has identical structure with $Li_2MnSiO_4$ and shows stable cycle with less capacity of ~170 mAh/g. The major drawback of silicate family is low electronic conductivity (3 orders of magnitude lower than $LiFePO_4$). To overcome this disadvantage, carbon composite of the silicate compound was prepared by sucrose mixing with silicate precursors and heat-treated in reducing atmosphere. The crystal structure and physical morphology of $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ was investigated by X-ray diffraction, scanning electron microscopy, and high resolution transmission electron microscopy. The $Li_2Mn_{0.5}Fe_{0.5}SiO_4$/C nanocomposite has a maximum discharge capacity of 200 mAh/g, and 63% of its discharge capacity is retained after the tenth cycles. We have realized that more than 1 mole of electrons are exchanged in $Li_2Mn_{0.5}Fe_{0.5}SiO_4$. We have observed that $Li_2Mn_{0.5}Fe_{0.5}SiO_4$ is unstable structure upon first delithiation with structural collapse. High temperature cell performance result shows high capacity of discharge capacity (244 mAh/g) but it had poor capacity retention (50%) due to the accelerated structural degradation and related reaction.

Analysis of Electrochemical Characteristics of the Rechargeable $LiMn_2O_4$ Thin Film Battery (재충전이 가능한 박막전자용 $LiMn_2O_4$ 박막 전지의 전기화학 특성 분석)

  • Kim Joo-Seok;Jung Hunjoon;Kim Chan-Soo;Joo Seung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.131-135
    • /
    • 2000
  • In order to investigate the origin of capacity fading with charge/discharge cycling in $LiMn_2O_4$ thin film battery, impedance studies have been performed with increasing cycling in $LiMn_2O_4/1M\;LiClO_4-PC/Li$ cells. The fitted values obtained from impedance data show good agreements with the experimental results. Especially, the element of charge transfer resistance of $LiMn_2O_4/liquid$ electrolyte interface initially increased, and then saturated with increasing the charge/discharge cycles, which could explain the cause of initial abrupt capacity fading of $LiMn_2O_4$ thin film with cycling due to interfacial reaction. The steady capacity fading is caused by the increasing of Warburg resistance. The chemical diffusion coefficient of Li ions decreased from $5.15\times10^{-11}cm^2/sec$ at 1st cycles to $6.3\times10^{-12}cm^2/sec$ at 800th cycles, which attributed to the Jahn-Teller distortion/Mn dissolution which diminishes tetra hedral sites necessary for Li diffusion in $LiMn_2O_4$.

Electrochemical Properties of LiMnO2-organic Composite Cathodes with High Capacity for Lithium Ion Polymer Battery (리튬 이온 폴리머 전지용 고용량 LiMnO2-organic Composite 정극의 전기화학적 특성)

  • 김종욱;조영재;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.162-168
    • /
    • 2002
  • The purpose of this study is to research and develop LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with high energy density for Lithium ion polymer battery. This paper describes cyclic voltammetry, impedance sepctroscopy, electrochemical properties of LiMnO$_2$-organic and Li$_{0.3}$MnO$_{2}$-organic composite with polymer electrolyte as a function of a mixed ratio. The first discharge capacity of LiMnO$_2$-PAn with 3 wt.% PAn was 83mHA/g, while that of Li$_{0.3}$MnO$_{2}$-PPy composite was 136 mAh/g. The Ah efficiency was above 98% after the 2nd cycle. The LiMnO$_2$-PAn with DMcT 2 wt.% and Li$_{0.3}$MnO$_{2}$-PPy composites cathode with 5wt. PPy in PVDF-PC-EC-LiClO$_4$ electrolyte showed good capaity with cycling. The discharge capacity of LiMnO$_2$-PAn with wt.% DMcT was 80 and 130 mAh/g at 1st and 12th cycle, respectively. The capacity of LiMnO$_2$-PAn composite with 2 wt.% DMcT was higher than that of LiMnO$_2$-PAn composite.mposite.

Effects of $LiMn_{2}O_{4}$ Addition on $CO_{2}$ Decomposition Using Spinel Phase $Fe_{3}O_{4}$ (스피넬상 $Fe_{3}O_{4}$를 이용한 $CO_{2}$ 분해에서 $LiMn_{2}O_{4}$ 첨가효과)

  • Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.174-179
    • /
    • 2001
  • The spinel $Fe_{3}O_{4}$ powders were synthesized using 0.2 $M-FeSO_4{\cdot}7H_{2}O$ and 0.5 M-NaOH by oxidation in air and the spinel $LiMn_{2}O_{4}$ powders were synthesized at 480 $^{\circ}C$ for 12 h in air by a sol-gel method using manganese acetate and lithium hydroxide as starting materials. The synthesized $LiMn_{2}O_{4}$ powders were mixed at portion of 5, 10, 15 and 20 wt% of $Fe_{3}O_{4}$ powders using a ball-mill. The mixed catalysts were dried at room temperature for 24 hrs. The mixed catalysts were reduced by hydrogen gas at 350 $^{\circ}C$ for 2 h. The carbon dioxide decomposition rates of the mixed catalysts were 90% in all the mixed catalysts but the decomposition rate of carbon dioxide was increased with adding $LiMn_{2}O_{4}$ powders to $Fe_{3}O_{4}$ powders.

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.