DOI QR코드

DOI QR Code

Electrochemical Characteristics of LiMnO2 for Lithium Secondary Battery

  • Jin Bo (College of Materials Science and Engineering, Jilin University, Department of Electrical Engineering, Chonnam National University) ;
  • Jun Dae-Kyoo (Department of Electrical Engineering, Chonnam National University) ;
  • Gu Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • Published : 2006.04.01

Abstract

Well-defined orthorhombic $LiMnO_2\;and\;LiCo_{0.1}Mn_{0.9}O_2$ were synthesized by a solid-state reaction and quenching process. X-ray diffraction (XRD) results revealed that the as-synthesized powders showed an orthorhombic phase of a space group with Pmnm. The $Li/LiMnO_2\;and\;Li/LiCo_{0.1}Mn_{0.9}O_2$ cells were constituted and cycled galvanostatically in the voltage range of 2.0-4.3 V vs. $Li/Li^+$ at a current density of $0.5\;mA\;cm^{-2}$ at room temperature and $50^{\circ}C$, respectively. The results demonstrated that the highest specific capacity of $Li/LiMnO_2$ cells at room temperature and $50^{\circ}C$ was 95 and $155\;mAh\;g^{-1}$, respectively. As for $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells, the highest specific capacity at room temperature and $50^{\circ}C$ was 160 and $250\;mAh\;g^{-l}$, respectively. It could be seen that the performance of $Li/LiCo_{0.1}Mn_{0.9}O_2$ cells was better than that of $Li/LiMnO_2$ cells.

Keywords

References

  1. K. Ozawa, 'Lithium-ion rechargeable batteries with $LiCoO_2$ and carbon electrodes: the $LiCoO_2/C$ system', Solid State Ionics, Vol. 69, p. 212, 1994 https://doi.org/10.1016/0167-2738(94)90411-1
  2. G. Pistoia, D. Zane, and Y. Zhang, 'Some aspects of $LiMn_2O_4$ electrochemistry in the 4 volt range', J. Electrochem. Soc., Vol. 142, p. 2551, 1995 https://doi.org/10.1149/1.2050052
  3. J. N. Resimers, J. R. Dahn, and U. von Sacken, 'Effects of impurities on the electrochemical properties of $LiCoO_2$', J. Electrochem. Soc., Vol. 140, p.2752, 1993 https://doi.org/10.1149/1.2220905
  4. W. Li, J. N. Resimers, and J. R. Dahn, 'In situ Xraydiffraction and electrochemical studies of $Li_{1-x}NiO_2$', Solid State Ionics, Vol. 67, p. 123, 1993 https://doi.org/10.1016/0167-2738(93)90317-V
  5. J. R. Dahn, U. von Sacken, M. W. Juzkow, and H. Al-Janaby, 'Rechargeable $LiNiO_2$/carbon cells', J. Electrochem. Soc., Vol. 138, p. 2207, 1991 https://doi.org/10.1149/1.2085950
  6. I. Koetschau, M. N. Richard, J. R. Dahn, J. B. Soupart, and J. C. Rousche, 'Orthorhombic', J. Electrochem. Soc., Vol. 142, p. 2906, 1995 https://doi.org/10.1149/1.2048663
  7. I.-S. Jeong, J.-U. Kim, and H.-B. Gu, 'Electrochemical properties of $LiMg_yMn_{2-y}O_4$ spinel phases for rechargeable lithium batteries', J. Power Sources, Vol. 102, p. 55, 2001 https://doi.org/10.1016/S0378-7753(01)00775-3
  8. B. Jin, J.-U. Kim, and H.-B. Gu, 'Electrochemical properties of lithium-sulfur batteries', J. Power Sources, Vol. 117, p. 148, 2003 https://doi.org/10.1016/S0378-7753(03)00113-7
  9. J.-U. Kim, Y-J. Jo, G.-C. Park, and H.-B. Gu, 'Charge/discharge characteristics of $LiMnO_2$ composite for lithium polymer battery', J. Power Sources, Vol. 119-121, p. 686, 2003 https://doi.org/10.1016/S0378-7753(03)00231-3
  10. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, '$Li_xCoO_2$ (0 https://doi.org/10.1016/0025-5408(80)90012-4
  11. J. R. Dahn, U. von Sacken, and C. A. Michel, 'Structure and electrochemistry of $Li_1{\pm}yNiO_2$ and a new $Li_2NiO_2$ phase with the $Ni(OH)_2$ structure', Solid State Ionics, Vol. 44, p. 87, 1990 https://doi.org/10.1016/0167-2738(90)90049-W
  12. D. Guyomard and J. M. Tarascon, 'The carboni $Li_{1+x}Mn_2O_4$ system', Solid State Ionics, Vol. 69, p. 222, 1994 https://doi.org/10.1016/0167-2738(94)90412-X
  13. Y S. Lee, Y. K. Sun, K. Adachi, and M. Yoshio, 'Synthesis and electrochemical characterization of orthorhombic $LiMnO_2$ material', Electrochimica Acta, Vol. 48, p. 1031, 2003 https://doi.org/10.1016/S0013-4686(02)00817-4
  14. W. D. Johnston and R. R. Keikes, 'A study of the $Li_xMn_{1+x}O$ system', J. Am. Chern. Soc., Vol. 78, p. 3255, 1956 https://doi.org/10.1021/ja01595a006
  15. V. R. Hoppe, G. Brachtel, and M. Jansen, 'Zur kenntnis der oxomanganate (III): Uber $LiMnO_2$ and$\beta-NaMnO_2$', Z. Anorg. Allg. Chem., Vol. 417, p. 1, 1975 https://doi.org/10.1002/zaac.19754170102
  16. Y.-I. Jang, B. Huang, Y.-M. Chiang, and D. R. Sadoway, 'Stabilization of $LiMnO_2$ in the $\alpha-NaFeO_2$ structure type by $LiAlO_2$ addition', Electrochem. Solid-State Lett., Vol. 1, p. 13, 1998 https://doi.org/10.1149/1.1390619
  17. Y.-I. Jang and Y.-M. Chiang, 'Stability of the monoclinic and orthorhombic phases of $LiMnO_2$ with temperature, oxygen partial pressure, and Al doping', Solid State Ionics, Vol. 130, p. 53, 2000 https://doi.org/10.1016/S0167-2738(00)00310-6
  18. Y.-M. Chiang, H. Wang, and Y.-I. Jang, 'Electrochemically induced cation disorder and phase transformations in lithium intercalation oxides', Chem. Mater., Vol. 13, p. 53, 2001 https://doi.org/10.1021/cm000569z
  19. S.-T. Myung, S. Komaba, and N. Kumagai, 'Hydrothermal synthesis and electrochemical behavior of orthorhombic $LiMnO_2$', Electrochimica Acta, Vol. 47, p. 3287, 2002 https://doi.org/10.1016/S0013-4686(02)00248-7
  20. B. Garcia, J. Farcy, J. P. Pereira-Ramos, J. Perichon, and N. Baffier, 'Low-temperature cobalt oxide as rechargeable cathodic material for lithium batteries', J. Power Sources, Vol. 54, p. 373, 1995 https://doi.org/10.1016/0378-7753(94)02105-C
  21. D. Caurant, N. Baffler, B. Garcia, and J. P. PereiraRamos, 'Synthesis by a soft chemistry route and characterization of $LiNi_xCo_{1-x}O_2$ $(0{\ll }x{\ll }1)$ cathode materials', Solid State Ionics. Vol. 91, p. 45, 1996 https://doi.org/10.1016/S0167-2738(96)00418-3
  22. Y. K. Sun, 'Synthesis and electrochemical studies of spinel $Li_{1.03}Mn_2O_4$ cathode materials prepared by a sol-gel method for lithium secondary batteries', Solid State Ionics, Vol. 100, p. 115, 1997 https://doi.org/10.1016/S0167-2738(97)00311-1
  23. Z. P. Guo, K. Konstantinov, G. X. Wang, H. K. Liu, and S. X. Dou, 'Preparation of orthorhombic $LiMnO_2$ material via the sol-gel process', J. Power Sources, Vol. 119-121, p. 221, 2003 https://doi.org/10.1016/S0378-7753(03)00237-4
  24. Z. P. Guo, S. Zhong, G. X. Wang, H. K. Liu, and S. X. Dou, 'Structure and electrochemical characteristics of $LiMn_{0.7}M_{0.3}O_2$ (M=Ti, V, Zn, Mo, Co, Mg, Cr)', J. Alloys Compounds, Vol. 348, p. 231, 2003 https://doi.org/10.1016/S0925-8388(02)00805-8
  25. G. Ceder and S. K. Mishra, 'The stability of orthorhombic and monoclinic-layered $LiMnO_2$', Electrochem. Solid-State Lett., Vol. 2, p. 550, 1999 https://doi.org/10.1149/1.1390900
  26. T. Ohzuku, M. Kitagawa, and T. Hirai, 'Electrochemistry of manganese dioxide in lithium nonaqueous cell (III) X-ray diffractional study on the reduction of spinel-related manganese dioxide', J. Electrochem. Soc., Vol. 137, p. 769, 1990 https://doi.org/10.1149/1.2086552

Cited by

  1. Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries vol.12, pp.2, 2007, https://doi.org/10.1007/s10008-007-0367-4
  2. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries vol.12, pp.12, 2008, https://doi.org/10.1007/s10008-008-0509-3
  3. Influence of Maximum Lithium Ion Concentration in Composition-Gradient Electrodes on Diffusion-Induced Stresses and Electrochemical Performances vol.162, pp.9, 2015, https://doi.org/10.1149/2.0801509jes