• Title/Summary/Keyword: $Li(Ni_xCo_yMn_z)O_2$

Search Result 11, Processing Time 0.025 seconds

The Research and Development Trend of Cathode Materials in Lithium Ion Battery (리튬이차전지용 양극재 개발 동향)

  • Park, Hong-Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.197-210
    • /
    • 2008
  • The cathode materials for lithium ion battery have been developed in accordance with the battery performance. $LiCoO_2$ initially adapted at lithium ion battery is going to be useful even at the charging voltage of 4.3 V by surface treatment or doping which drastically improved the performance of $LiCoO_2$. On the other hand, the complicate and multiple functions of recent electronic equipments required higher operational voltage and higher capacity than ever, which is going to be driving force for developing new cathode materials. Some of them are $LiNi_{1-x}{M_xO_2}$, $Li[Ni_{x}Mn_{y}Co_{z}]O_{2}$, $Li[{Ni}_{1/2}{Mn}_{1/2}]O_{2}$. Other new type of cathode materials having high safety is also developed to apply for HEV (hybrid electrical vehicle) and power tool applications. ${LiMn}_{2}{O}_{4}$ and $LiFePO_4$ are famous for highly stable material, which are expected to give contribution to make safer battery. In near future, the various materials having both capacity and safety will be developed by new technology, such as solid solution composite.

Analyses on the Physical and Electrochemical Properties of Al2O3 Coated LiCoO2 (리튬이차전지용 양극 활물질(LiCoC2)의 표면처리의 특성 분석 및 전기화학적 특성 고찰)

  • Chang, Youn-Han;Choi, Sei-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.184-189
    • /
    • 2007
  • The importance of secondary battery industry is getting excited according to the development of battery industry as a high efficiency energy supplier of electronic machine of mobile information such as mobile phone, lap-top computer, PDA. It is rasing the interest about security of safety and high efficiency of cathode material for main part of secondary lithium battery. The cathode material which has been used like $LiCoO_2,\;LiMn_2O_4,\;LiNi_xCo_yMn_zO_2,\;LiNi_xCo_yM_zO_2$ (M=Al, Zr, Mg etc.,) the most typical material is $LiCoO_2$. But it is studying the development of substitute such as efficiency amelioration of $LiCoO_2$, thetiary element, olivine element because of the capacity of $LiCoO_2$, the matter of security; especially the betterment of efficiency, security research of safety has been actively processed in domestic and overseas about surface coating treatment of active cathode which is using oxide ($M_xO_3$). This study analyses side effect of battery according to increase of surface treatment, formation of precipitation for reagent condensation, non-reagent residue of oxide ($M_xO_3$) which is remains during the surface treatment of $LiCoO_2$; conducts study of new process, the consideration of the electrochemical property to improve oxide solution of mixing rate, mixture of surface treatment, dryness, calcinations conditionetc.

Synthesis of Ni-rich NCMA Precursor through Co-precipitation and Improvement of Cycling through Boron and Sn Doping (공침법을 통한 Ni-rich NCMA 합성과 붕소와 주석 도핑을 통한 사이클 특성 향상)

  • Jeon, Hyungkwon;Hong, Soonhyun;Kim, Minjeong;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.210-215
    • /
    • 2022
  • Extensive research is being carried out on Ni-rich Li(NixCoyMn1-x-y)O2 (NCM) due to the growing demand for electric vehicles and reduced cost. In particular, Ni-rich Li(NixCoyMn1-x-y-zAlz)O2 (NCMA) is attracting great attention as a promising candidate for the rapid development of Co-free but electrochemically more stable cathodes. Al, an inactive element in the structure, helps to improve structural stability and is also used as a doping element to improve cycle capability in Ni-rich NCM. In this study, NCMA was successfully synthesized with the desired composition by direct coprecipitation. Boron and tin were also used as dopants to improve the battery performance. Macro- and microstructures in the cathodes were examined by microscopy and X-ray diffraction. While Sn was not successfully doped into NCMA, boron could be doped into NCMA, leading to changes in its physicochemical properties. NCMA doped with boron revealed substantially improved electrochemical properties in terms of capacity retention and rate capability compared to the undoped NCMA.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition

  • Ramasamy, Hari Vignesh;Sinha, Soumyadeep;Park, Jooyeon;Gong, Minkyung;Aravindan, Vanchiappan;Heo, Jaeyeong;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.196-205
    • /
    • 2019
  • Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.

Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid (폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출)

  • Son, Seong Ho;Kim, Jin Hwa;Kim, Hyun-Jong;Kim, Sun Jung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • Nickel, cobalt and manganese-based(NCM, $Li(Ni_xCo_yMn_z)O_2$) cathode active materials of spent lithium-ion batteries contained valuable metals such as cobalt(15 ~ 20%), nickel(25 ~ 30%), manganese(10 ~ 15%) and lithium(5 ~ 10%). It was investigated the eco-friendly leaching process for the recovery of valuable metal from spent lithium-ion battery NCM cathode active materials by DL-malic acid($C_4H_5O_6$) as an organic leachant in this research. The experiments were carried out to optimize the process parameters for the recovery of cobalt, nickel and lithium by varying the concentration of lixivant, reductant concentration, solid/liquid ratio and temperature. The leaching solution was analyzed using ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer). Cathode active materials of 5 wt. % were introduced into the leaching solution which was 2 M DL-malic acid in addition of 5 vol. % $H_2O_2$ at $80^{\circ}C$ and it resulted in the recovery of 99.10% cobalt, 99.80% nickel and 99.75% lithium in 120 min. $H_2O_2$ in DL-malic acid solution acts as an effective reducing agents, which enhance the leaching of metals.

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

Performance Analysis and Degradation Characteristics of NCM LIB for ESS (ESS용 NCM계 LIB의 설계인자별 성능분석 및 열화특성 연구)

  • Kwon, S.J;Park, E.Y;Lim, J.H;Choi, J.H;Kim, J.H
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.219-221
    • /
    • 2018
  • ESS용 NCM계 $LIB(Li[Ni_xCo_yMn_z]O_2)$의 양극 전이금속 설계인자 조성비(x:y:z)를 5:2:3, 6:2:2로 달리하여 제작한 전지를 사용하여 C-rate별 방전시험을 통한 기본성능평가를 진행하였고, 가속열화 시험을 통한 수명특성을 분석하였다. EIS(Electrochemical Impedance Spectroscopy) 실험을 통하여 전지의 임피던스를 확인하였고, 열화되지 않은(Fresh) 전지와 열화된(Aging) 전지의 SOC(State-of-Charge)별 임피던스 특성을 비교 분석하였다.

  • PDF

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui;Mun, Junyoung;Kang, Dong-Ku;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • $LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).