DOI QR코드

DOI QR Code

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition

  • Ramasamy, Hari Vignesh (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Sinha, Soumyadeep (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Park, Jooyeon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Gong, Minkyung (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Aravindan, Vanchiappan (Department of Chemistry, Indian Institute of Science Education and Research (IISER)) ;
  • Heo, Jaeyeong (Department of Materials Science and Engineering, and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Lee, Yun-Sung (Department of Advanced Chemicals and Engineering, Chonnam National University)
  • Received : 2018.10.23
  • Accepted : 2018.12.18
  • Published : 2019.06.30

Abstract

Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.

Keywords

E1JTC5_2019_v10n2_196_f0001.png 이미지

Fig. 1. XRD peaks of LiNi0.8Co0.1Mn0.1O2 obtained from Ecopro (Korea). (b) FE-SEM image of NCM811 with a spherical morphology (c and d). HR-TEM images of 50-cycle ALD Al2O3-modified particles.

E1JTC5_2019_v10n2_196_f0002.png 이미지

Fig. 2. TEM elemental mapping of LiNi0.8Co0.1Mn0.1O2 with two, five, and 10 cycles of ALD Al2O3 modification.

E1JTC5_2019_v10n2_196_f0003.png 이미지

Fig. 4. EIS spectra of ALD Al2O3-modified electrodes (a) before (inset shows the equivalent circuit) and (b) after cycling at a rate of 1 C at room temperature for 100 cycles.

E1JTC5_2019_v10n2_196_f0004.png 이미지

Fig. 5. FE-SEM images of the NCM811 electrode after 500 cycles at a high temperature (50℃): (a) pristine electrode and (b) Al2O3-coated electrode/

E1JTC5_2019_v10n2_196_f0005.png 이미지

Fig. 6. Schematic of ALD Al2O3-modified NCM811 electrode

E1JTC5_2019_v10n2_196_f0006.png 이미지

Fig. 3. (a, b) Charge–discharge and differential capacity plot of ALD-modified NCM811 at room temperature (0.2 C rate). (c) Rate capability studies and (d) cycling profiles of Al2O3-modified NCM811 at room temperature at a rate of 1 C. (e) Rate performance of ALD-modified NCM811 electrodes at 50℃. (f) Cycling stability of Al2O3-modified NCM811 electrodes at a rate of 5 C in elevated-temperature conditions.

References

  1. D. Andre, S. J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos and B. Stiaszny, J. Mater. Chem. A, 2015, 3, 6709-6732. https://doi.org/10.1039/C5TA00361J
  2. D. Jang, K. Palanisamy, Y. Kim, and W.S. Yoon, J. Electrochem. Sci. Technol., 2013, 3(3), 102-107.
  3. J. Kim, N. Go, H. Kang, A. Tron, and J. Mun, J. Electrochem. Sci. Technol., 2017, 8(1), 53-60. https://doi.org/10.5229/JECST.2017.8.1.53
  4. M. Latifatu, C. Y. Bon, K. S. Lee, L. Hamenu, Y. Il Kim, Y. J. Lee, Y. M. Lee, and J. M. Ko, J. Electrochem. Sci. Technol., 2018, 9(4), 330-338. https://doi.org/10.5229/JECST.2018.9.4.330
  5. J. W. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2018, 9(3), 176-183. https://doi.org/10.5229/JECST.2018.9.3.176
  6. G. W. Yoo and J. T. Son, J. Electrochem. Sci. Technol., 2016, 7(2), 179-184. https://doi.org/10.5229/JECST.2016.7.2.179
  7. Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung and K. Amine, Nat. Mater, 2012, 11, 942-947. https://doi.org/10.1038/nmat3435
  8. D. Song, P. Hou, X. Wang, X. Shi and L. Zhang, ACS Appl. Mater. Interfaces, 2015, 7, 12864-12872. https://doi.org/10.1021/acsami.5b02373
  9. D. Mohanty, K. Dahlberg, D. M. King, L. A. David, A. S. Sefat, D. L. Wood, C. Daniel, S. Dhar, V. Mahajan, M. Lee and F. Albano, Scientific Reports, 2016, 6, 26532. https://doi.org/10.1038/srep26532
  10. S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang and K. Kang, Adv. Energy Mater, 2014, 4, 1300787. https://doi.org/10.1002/aenm.201300787
  11. L. A. Riley, S. V. Atta, A. S. Cavanagh, Y. Yan, S. M. George, P. Liu, A. C. Dillon, S. H. Lee, J. Power Sources, 2011, 196, 3317-3324. https://doi.org/10.1016/j.jpowsour.2010.11.124
  12. S. Wolff-Goodrich, F. Lin, I. M. Markus, D. Nordlund, H. L. Xin, M. Asta and M. M. Doeff, Phys. Chem. Chem. Phys., 2015, 17, 21778-21781. https://doi.org/10.1039/C5CP03228H
  13. K. R. Prakasha, M. Sathish, P. Bera and A. S. Prakash, ACS Omega, 2017, 2, 2308-2316. https://doi.org/10.1021/acsomega.7b00381
  14. J. Zhang, Z. Yang, R. Gao, L. Gu, Z. Hu and X. Liu, ACS Appl. Mater. Interfaces, 2017, 9, 29794-29803. https://doi.org/10.1021/acsami.7b08802
  15. W. Zhao, G. Zheng, M. Lin, W. Zhao, D. Li, X. Guan, Y. Ji, G. F. Ortiz, Y. Yang, J. Power Sources, 2018, 380, 149-157. https://doi.org/10.1016/j.jpowsour.2018.01.041
  16. F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major and D. Aurbach, Adv. Energy Mater, 2018, 8, 1701682. https://doi.org/10.1002/aenm.201701682
  17. Y. Su, S. Cui, Z. Zhuo, W. Yang, X. Wang and F. Pan, ACS Appl. Mater. Interfaces, 2015, 7, 25105-25112. https://doi.org/10.1021/acsami.5b05500
  18. E. Zhecheva, R. Stoyanova, G. Tyuliev, K. Tenchev, M. Mladenov, S. Vassilev, Solid State Sci., 2003, 5, 711-720. https://doi.org/10.1016/S1293-2558(03)00096-7
  19. K. Liu, G. L. Yang, Y. Dong, T. Shi, L. Chen, J. of Power Sources, 2015, 281, 370-377. https://doi.org/10.1016/j.jpowsour.2014.12.131
  20. S. M. Lee, S. H. Oh, J. P. Ahn, W. I. Cho, H. Jang, J. Power Sources, 2006, 159, 1334-1339. https://doi.org/10.1016/j.jpowsour.2005.12.035
  21. W. Cho, S. M. Kim, J. H. Song, T. Yim, S. G. Woo, K. W. Lee, J. S. Kim, Y. J. Kim, J. Power Sources, 2015, 282, 45-50. https://doi.org/10.1016/j.jpowsour.2014.12.128
  22. D. Bhuvaneswari, G. Babu, N. Kalaiselvi, Electrochimica Acta. 2013, 109, 684-693. https://doi.org/10.1016/j.electacta.2013.07.175
  23. T. N. Phan, M. K. Gong, R. Thangavel, Y. S. Lee, C. H. Ko, J. Alloys Compd, 2017, 728, 1305-1314. https://doi.org/10.1016/j.jallcom.2017.09.081
  24. D. J. Lee, B. Scrosati, Y. K. Sun, J. Power Sources, 2011, 196, 7742-7746. https://doi.org/10.1016/j.jpowsour.2011.04.007
  25. Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang, J. Electrochem. Soc., 2002, 149, A466-A471. https://doi.org/10.1149/1.1456919
  26. H. B. Kim, B. C. Park, S. T. Myung, K. Amine, J. Prakash, Y. K. Sun, J. Power Sources, 2008, 179, 347-350. https://doi.org/10.1016/j.jpowsour.2007.12.109
  27. Y. K. Sun, S. T. Myung, B. C. Park and H. Yashiro, J. Electrochem. Soc., 2008, 155, A705-A710. https://doi.org/10.1149/1.2956088
  28. S.M. George, Chem. Rev, 2010, 110, 111-131. https://doi.org/10.1021/cr900056b
  29. L. Wen, M. Zhou, C. Wang, Y. Mi, Y. Lei, Adv. Energy Mater, 2016, 6,1600468. https://doi.org/10.1002/aenm.201600468
  30. X. Meng, J. Mater. Chem. A, 2017, 5, 10127-10149. https://doi.org/10.1039/C7TA02742G
  31. Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.H. Lee, Adv. Mater, 2010, 22, 2172-2176. https://doi.org/10.1002/adma.200903951
  32. Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, S.-H. Lee, J. Electrochem. Soc., 2010, 157, A75-A81. https://doi.org/10.1149/1.3258274
  33. J. W. Kim, J. J. Travis, E. Hu, K. W. Nam, S. C. Kim, C. S. Kang, J. H. Woo, X. Q. Yang, S. M. George, K. H. Oh, S. J. Cho, S. H. Lee, J. Power Sources, 2014, 254, 190-197. https://doi.org/10.1016/j.jpowsour.2013.12.119
  34. A. Yano, S. Aoyama, M. Shikano, H. Sakaebe, K. Tatsumi and Z. Ogumi, J. Electrochem. Soc, 2015, 162, A3137-A3144. https://doi.org/10.1149/2.0131502jes
  35. W. Liu, X. Le, D. Xiong, Y. Hao, J. Li, H. Kou, B. Yan, D. Li, S. Lu, A. Koo, K. Adair, X. Sun, Nano Energy, 2018, 44, 111-120. https://doi.org/10.1016/j.nanoen.2017.11.010
  36. S. T. Myung, K. Izumi, S. Komaba, Y. K. Sun, H. Yashiro and N. Kumagai, Chem. Mater., 2005, 17, 3695-3704. https://doi.org/10.1021/cm050566s
  37. J. Kang and B. Han, ACS Appl. Mater. Interfaces, 2015, 7, 11599-11603. https://doi.org/10.1021/acsami.5b02572
  38. Y. Zhao, J. Li and J. R. Dahn, Chem. Mater, 2017, 29, 5239-5248. https://doi.org/10.1021/acs.chemmater.7b01219
  39. W. Lu, L. Liang, X. Sun, X. Sun, C. Wu, L. Hou, J. Sun and C. Yuan, Nanomaterials, 2017, 7, 325. https://doi.org/10.3390/nano7100325
  40. G. Cherkashinin, M. Motzko, N. Schulz, T. Spath and W. Jaegermann, Chem. Mater, 2015, 27, 2875-2887. https://doi.org/10.1021/cm5047534
  41. P. Y. Hou, L. Q. Zhang and X. P. Gao, J. Mater. Chem. A, 2014, 2, 17130-17138. https://doi.org/10.1039/C4TA03158J
  42. S. Hwang, D. H. Kim, K. Y. Chung and W. Chang, Appl. Phys. Lett, 2014, 105, 103901. https://doi.org/10.1063/1.4895336
  43. R. Younesi, A. S. Christiansen, R. Scipioni, D. T. Ngo, S. B. Simonsen, K. Edstrom, J. Hjelm and P. Norby, J. Electrochem. Soc., 2015, 162, A1289-A1296. https://doi.org/10.1149/2.0761507jes
  44. A. M. Kannan, A. Manthiram, Electrochemical and Solid state letters, 2002, 5(7), A167-A169. https://doi.org/10.1149/1.1482198
  45. S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, Journal of Power Sources, 2014, 258, 210-217. https://doi.org/10.1016/j.jpowsour.2014.02.018
  46. H. V. Ramasamy, K. Kaliyappan, R. Thangavel, V. Aravindan, K. Kang, D. U. Kim, Y. Park, X. Sun Y. S. Lee, J. Mater. Chem. A, 2017, 5, 8408. https://doi.org/10.1039/C6TA10334K
  47. H. V. Ramasamy, K. Kaliyappan, R. Thangavel, W. M. Seong, K. Kang, Z. Chen, Y. S. Lee, J. Phys. Chem. Lett. 2017, 8, 5021-5030. https://doi.org/10.1021/acs.jpclett.7b02012
  48. R. Zhao, J. Liang, J. Huang, R. Zeng, J. Zhang, H. Chen, G. Shi, J. Alloy and Comp., 2017, 724, 1109-1116. https://doi.org/10.1016/j.jallcom.2017.05.331
  49. D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, J. Electrochem. Soc., 2000, 147(4), 1322-1331. https://doi.org/10.1149/1.1393357
  50. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway, Y. M. Chiang, J. Electrochem. Soc., 1999, 146(2), 473-480. https://doi.org/10.1149/1.1391631
  51. L. Chen, R. E. Warburton, K. Chen, J. A. Libera, C. Johnson, Z. Yang, M. C. Hersam, J. P. Greeley, J. W. Elam, Chem., 2018, 4, 1-18. https://doi.org/10.1016/j.chempr.2017.12.021