DOI QR코드

DOI QR Code

Electrochemical Dopamine Sensors Based on Graphene

  • Rahman, Md. Mahbubur (Department of Energy and Materials, Konkuk University) ;
  • Lee, Jae-Joon (Department of Energy Materials and Engineering, Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University)
  • Received : 2018.11.07
  • Accepted : 2019.01.11
  • Published : 2019.06.30

Abstract

The large surface area and the high electrical conductivity of graphene (GP) allow it to act as an "electron wire" between the redox center of biomolecules and an electrode surface. The faster electron transfer kinetics and excellent catalytic activity of GP facilitate the accurate and selective electrochemical detection of biomolecules. This mini-review provides an overview of the recent developments and progress of GP, functionalized or doped GP, and GP-composites based sensors for the selective and interference-free detection of dopamine (DA). The electrochemical principles and future perspective and challenges of DA sensors were also discussed based on GP.

Keywords

E1JTC5_2019_v10n2_185_f0001.png 이미지

Scheme 1. Schematic presentation of an electrochemical dopamine sensor.

E1JTC5_2019_v10n2_185_f0002.png 이미지

Fig. 1. SEM images of 3D graphene electrodes (reproduced with permission from ref. [47]).

E1JTC5_2019_v10n2_185_f0003.png 이미지

Fig. 2. Interaction mechanism of DA and AA at GO/GCE sensor (reproduced with permission from ref. [52]).

E1JTC5_2019_v10n2_185_f0004.png 이미지

Fig. 3. Structures of reduced graphene and EDTA-modified graphene, (reproduced with permission from ref. [56]).

E1JTC5_2019_v10n2_185_f0005.png 이미지

Fig. 5. Schematic illustration of the fabrication of GNPs/GP modified carbon fiber electrode (CFE), (reproduced with permission from ref. [66]).

E1JTC5_2019_v10n2_185_f0006.png 이미지

Fig. 6. Schematic illustration of the preparation of β-CD-GNPs-GP, (reproduced with permission from ref. [67]).

E1JTC5_2019_v10n2_185_f0007.png 이미지

Fig. 7. Schematic of the synthesis of the chitosan-graphene composite together with the photographic images of the samples at different stages of the procedure, (reproduced with permission from ref. [74]).

E1JTC5_2019_v10n2_185_f0008.png 이미지

Fig. 4. (A) Interaction mechanism of DA at the N-doped and oxygen functional GP, (B) electrochemical redox reactions of AA, DA, and UA at pH 7.0, and (C) pH-dependent oxidation signal of DA, (reproduced with permission from ref. [63]).

Table 1. Analytical performances of some reported GP-based sensors for the detection of DA.

E1JTC5_2019_v10n2_185_t0001.png 이미지

Table 2. Analytical performances of some reported functionalized or doped graphene-based sensors for the detection of DA.

E1JTC5_2019_v10n2_185_t0002.png 이미지

Table 3. Analytical performances of some graphene composites-based sensors for the detection of DA.

E1JTC5_2019_v10n2_185_t0003.png 이미지

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater., 2007, 6, 183-191. https://doi.org/10.1038/nmat1849
  2. D. Li, R. B. Kaner, Science, 2008, 320, 1170-1171. https://doi.org/10.1126/science.1158180
  3. Q. B. Bui, D. M. Nguyen, T. M. L. Nguyen, L. K. Kwac, H. G. Kim, S. C. Ko, H. Jeong, J. Electrochem. Sci. Technol., 2018, 9(3), 229-237. https://doi.org/10.5229/JECST.2018.9.3.229
  4. C. Ge, M. M. Rahman, N. C. D. Nath, M. J. Ju, K.-M. Noh, J.-J. Lee, Bull. Korean Chem. Soc., 2015, 36(3), 762-771. https://doi.org/10.1002/bkcs.10140
  5. F. D. Parmentier, T. Cazimajou, Y. Sekine, H. Hibino, H. Irie, D. C. Glattli, N. Kumada, P. Roulleau, Sci. Rep., 2016, 6, 38393. https://doi.org/10.1038/srep38393
  6. B. Terres, L. A. Chizhova, F. Libisch, J. Peiro, D. Jorger, S. Engels, A. Girschik, K. Watanabe, T. Taniguchi, S. V. Rotkin, J. Burgdorfer, C. Stampfer, Nat. Commun., 2016, 7, 11528. https://doi.org/10.1038/ncomms11528
  7. Y. J. Yun, J. Ju, J. H. Lee, S.-H. Moon, S.-J. Park, Y. H. Kim, W. G. Hong, D. H. Ha, H. Jang, G. H. Lee, H.-M. Chung, J. Choi, S. W. Nam, S.-H. Lee, Y. Jun, Adv. Funct. Mater., 2017, 27(33), 1701513. https://doi.org/10.1002/adfm.201701513
  8. J. Yoo, Y. Kim, C.-W. Lee, H. Yoon, S. Yoo, H. Jeong, J. Electrochem. Sci. Technol., 2017, 8(3), 250-256. https://doi.org/10.5229/JECST.2017.8.3.250
  9. N. Mahmood, C. Zhang, H. Yin, Y. Hou, J. Mater. Chem. A, 2014, 2(1), 15-32. https://doi.org/10.1039/C3TA13033A
  10. M. Liu, R. Zhang, W. Chen, Chem. Rev., 2014, 114(10), 5117-5160. https://doi.org/10.1021/cr400523y
  11. J. C. Kim, M. M. Rahman, M. J. Ju, J.-J. Lee, RSC Adv., 2018, 8(34), 19058-19066. https://doi.org/10.1039/C8RA02668H
  12. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, Y. Lin, Electroanalysis, 2010, 22(10), 1027-1036. https://doi.org/10.1002/elan.200900571
  13. D. Li, M. M. Rahman, C. Ge, J. Kim, J.-J. Lee, New J. Chem., 2017, 41(24), 15458-15465. https://doi.org/10.1039/C7NJ03330C
  14. X. Zhu, Q. Liu, X. Zhu, C. Li, M. Xu, Y. Liang, Int. J. Electrochem. Sci., 2012, 7, 5172-5184.
  15. M. M. Rahman, A. Ahmed, J. J. Lee, J. Electrochem. Soc., 2018, 165(3), B89-B95. https://doi.org/10.1149/2.0421803jes
  16. M. M. Rahman, A. J. S. Ahammad, J.-H. Jin, S. J. Ahn, J.-J. Lee, Sensors, 2010, 10(5), 4855-4886. https://doi.org/10.3390/s100504855
  17. M. M. Rahman, X.-B. Li, Y.-D. Jeon, H.-J. Lee, S. J. Lee, J.-J. Lee, J. Electrochem. Sci. Tech., 2012, 3(2), 90-94. https://doi.org/10.5229/JECST.2012.3.2.90
  18. M. M. Rahman, Y. J. Kim, J. J. Lee, Bull. Korean. Chem. Soc., 2017, 38(1), 27-32. https://doi.org/10.1002/bkcs.11037
  19. H. R. Zare, N. Rajabzadeh, N. Nasirizadeh, M. M. Ardakani, J. Electroanal. Chem., 2006, 589(1), 60-69. https://doi.org/10.1016/j.jelechem.2006.01.011
  20. T. Selvaraju, R. Ramaraj, J. Appl. Electrochem., 2003, 33(8), 759-762. https://doi.org/10.1023/A:1025096309274
  21. X.-B. Li, M. M. Rahman, G.-X. Xu, J.-J. Lee, Electrochim. Acta, 2015, 173, 440-447. https://doi.org/10.1016/j.electacta.2015.05.062
  22. A. Liu, M. Wei, I. Honma, H. Zhou, Adv. Funct. Mater., 2006, 16(3), 371-376. https://doi.org/10.1002/adfm.200500202
  23. S. R. Bae, H. Jeong, S. Jo, S. Jeon, Bull. Korean Chem. Soc., 2007, 28(12), 2363-2368. https://doi.org/10.5012/bkcs.2007.28.12.2363
  24. A. J. S. Ahammad, J. J. Lee, M. A. Rahman, Sensors, 2009, 9(4), 2289-2319. https://doi.org/10.3390/s90402289
  25. Y. Li, X. Lin, Sensor Actuat. B: Chem., 2006, 115(1), 134-139. https://doi.org/10.1016/j.snb.2005.08.022
  26. A. J. Downard, A. D. Roddick, A. M. Bond, Anal. Chim. Acta, 1995, 317(1-3), 303-310. https://doi.org/10.1016/0003-2670(95)00397-5
  27. M. J. Giz, B. Duong, N. J. Tao, J. Electroanal. Chem., 1999, 465, 72-79. https://doi.org/10.1016/S0022-0728(99)00056-X
  28. C. R. Raj, K. Tokuda, T. Ohsaka, Bioelectrochemistry, 2001, 53(2), 183-191. https://doi.org/10.1016/S0302-4598(00)00129-X
  29. S. A. Kumar, C.-F.Tang, S.-M.Chen, Talanta, 2008, 74(4), 860-866. https://doi.org/10.1016/j.talanta.2007.07.015
  30. A. J. Saleh Ahammad, X.-B. Li, M. M. Rahman, K.-M. Noh, J.-J. Lee, Int. J. Electrochem. Sci., 2013, 8, 7806-7815.
  31. J.-J. Feng, H. Guo, Y.-F. Li, Y.-H. Wang, W.-Y. Chen, A.-J. Wang, ACS Appl. Mater. Interfaces, 2013, 5(4), 1226-1231. https://doi.org/10.1021/am400402c
  32. E. S. Forzani, X. Li, N. Tao, Anal. Chem., 2007, 79(14), 5217-5224. https://doi.org/10.1021/ac0703202
  33. Y. Choi, J.-H. Choi, L. Liu, B.-K. Oh, S. Park, Chem. Mater., 2013, 25(6), 919-926. https://doi.org/10.1021/cm304030r
  34. Y. J. Jang, J. H. Jun, K. M. K. Swamy, K. Nakamura, H. S. Koh, Y. J. Yoon, J. Yoon, Bull. Korean Chem. Soc., 2005, 26(12), 2041-2043. https://doi.org/10.5012/bkcs.2005.26.12.2041
  35. R. N. Adams, Electrochemistry at Solid Electrodes, New York, Marcel Dekker, 1969.
  36. A. Bard, L. R. Faulkner, Electrochemical Methods, New York, Wiley, 1980.
  37. L.C. Clark, Trans. Am. Soc. Artif. Intern. Organs, 1956, 2, 41-48
  38. Y. Wang, H. Xu, J. Zhang, G. Li, Sensors, 2008, 8(4), 2043-2081. https://doi.org/10.3390/s8042043
  39. S. M. U. Ali, U. Nur, M. Willander, B. Danielsson, IEEE Trans. Nanotechnol., 2009, 8(6), 678-683. https://doi.org/10.1109/TNANO.2009.2019958
  40. A. M. Othman, N. M. H. Rizka, M. S. El-Shahawi, Anal. Sci., 2004, 20(4), 651-655. https://doi.org/10.2116/analsci.20.651
  41. A. G. Crevillen, M. Pumera, M. C. Gonzalez, A. Escarpa, Analyst, 2009, 134(4), 657-662. https://doi.org/10.1039/b822334c
  42. W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding, F. Braet, Angew. Chem. Int. Ed., 2010, 49(12), 2114-2138 https://doi.org/10.1002/anie.200903463
  43. A.G. Guell, A. S. Cuharuc, Y.-R. Kim, G. Zhang, S.-Y. Tan, N. Ebejer, P. R. Unwin, ACS Nano, 2015, 9(4), 3558-3571. https://doi.org/10.1021/acsnano.5b00550
  44. F. Valentini, D. Romanazzo, M. Carbone, G. Palleschi, Electroanalysis, 2012, 24(4), 872-881. https://doi.org/10.1002/elan.201100415
  45. M. Zhu, C. Zeng, J. Ye, Electroanalysis, 2011, 23(4), 907-914. https://doi.org/10.1002/elan.201000712
  46. N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, H. Marchetto, Adv. Funct. Mater., 2008, 18(21), 3506-3514. https://doi.org/10.1002/adfm.200800951
  47. X. Xiao, P. R. Miller, R. J. Narayan, S. M. Brozik, D. R. Wheeler, I. Brener, J. Wang, D. B. Burckel, R. Polsky, Electroanalysis, 2014, 26(1), 52-56. https://doi.org/10.1002/elan.201300253
  48. M. Bagherzadeh, M. Heydari, Analyst, 2013, 138(20), 6044-6051. https://doi.org/10.1039/c3an01318a
  49. S. Alwarappan, A. Erdem, C. Liu, C.-Z. Li, J. Phys. Chem. C, 2009, 113(20), 8853-8857. https://doi.org/10.1021/jp9010313
  50. J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron., 2012, 34(1), 70-76. https://doi.org/10.1016/j.bios.2012.01.016
  51. Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, H. Kim, Biosens. Bioelectron., 2010, 25(10), 2366-2369. https://doi.org/10.1016/j.bios.2010.02.031
  52. F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao, Q. Wang, Sensor Actuat. B: Chem., 2013, 186, 380-387. https://doi.org/10.1016/j.snb.2013.06.020
  53. M. Mallesha, R. Manjunatha, C. Nethravathi, G. S. Suresh, M. Rajamathi, J. S. Melo, T. V. Venkatesha, Bioelectrochemistry, 2011, 81(2), 104-108. https://doi.org/10.1016/j.bioelechem.2011.03.004
  54. Y. Bao, J. Song, Y. Mao, D. Han, F. Yang, L. Niu, A. Ivaska, Electroanalysis, 2011, 23(4), 878-884. https://doi.org/10.1002/elan.201000607
  55. L. Wu, L. Feng, J. Ren, X. Qu, Biosens. Bioelectron., 2012, 34(1), 57-62. https://doi.org/10.1016/j.bios.2012.01.007
  56. S. Hou, M. L. Kasner, S. Su, K. Patel, R. Cuellari, J. Phys. Chem. C, 2010, 114(35), 14915-14921. https://doi.org/10.1021/jp1020593
  57. S.-J. Li, J.-Z. He, M.-J. Zhang, R.-X. Zhang, X.-Lei Lv, S.-H. Li, H. Pang, Electrochim. Acta, 2013, 102, 58-65. https://doi.org/10.1016/j.electacta.2013.03.176
  58. Y. Wang, W. Peng, L. Liu, M. Tang, F. Gao, M. Li, Microchim. Acta, 2011, 174(1-2), 41-46. https://doi.org/10.1007/s00604-011-0593-4
  59. Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Biosens. Bioelectron., 2012, 34(1), 125-131. https://doi.org/10.1016/j.bios.2012.01.030
  60. S. M. Tan, H. L. Poh, Z. Sofer, M. Pumera, Analyst, 2013, 138(17), 4885-4891. https://doi.org/10.1039/c3an00535f
  61. N. Li, E. Zheng, X. Chen, S. Sun, C. You, Y. Ruan, X. Weng, Int. J. Electrochem. Sci., 2013, 8, 6524-6534.
  62. M. Li, C. Liu, H. Zhao, H. An, H. Cao, Y. Zhang, Z. Fan, Carbon, 2015, 86, 197-206. https://doi.org/10.1016/j.carbon.2015.01.029
  63. M. M. Rahman, N. S. Lopa, M. J. Ju, J.-J. Lee, J. Electroanal. Chem., 2017, 792, 54-60. https://doi.org/10.1016/j.jelechem.2017.03.038
  64. W. Zhu, T. Chen, X. Ma, H. Ma, S. Chen, Colloids Surf. B: Biointerfaces, 2013, 111, 321-326. https://doi.org/10.1016/j.colsurfb.2013.06.026
  65. J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou, H. Jiang, Colloids Surf. B: Biointerfaces, 2013, 111, 392-397. https://doi.org/10.1016/j.colsurfb.2013.06.030
  66. J. Du, R. Yue, F. Ren, Z. Yao, F. Jiang, P. Yang, Y. Du, Gold Bull., 2013, 46(3), 137-144. https://doi.org/10.1007/s13404-013-0090-0
  67. X. Tian, C. Cheng, H. Yuan, J. Du, D. Xiaoa, S. Xie, M. M. F. Choi, Talanta, 2012, 93, 79-85. https://doi.org/10.1016/j.talanta.2012.01.047
  68. C.-L. Sun, H.-H. Lee, J.-M. Yang, C.-C. Wu, Biosens. Bioelectron., 2011, 26(8), 3450-3455. https://doi.org/10.1016/j.bios.2011.01.023
  69. S.-J. Li, D.-H. Deng, Q. Shi, S.-R. Liu, Microchim. Acta, 2012, 177(3-4), 325-331. https://doi.org/10.1007/s00604-012-0782-9
  70. K. Chu, F. Wang, X.-L. Zhao, X.-W. Wang, Y. Tian, Mater. Sci. Eng. C, 2017, 81, 452-458. https://doi.org/10.1016/j.msec.2017.08.053
  71. D. Liu, M. M. Rahman, C. Ge, J. Kim, J.-J. Lee, New J. Chem., 2017, 41(24), 15458-15465. https://doi.org/10.1039/C7NJ03330C
  72. Q. Liu, X. Zhu, Z. Huo, X. He, Y. Liang, M. Xu, Talanta, 2012, 97, 557-562. https://doi.org/10.1016/j.talanta.2012.05.013
  73. P. Si, H. Chen, P. Kannan, D.-H. Kim, Analyst, 2011, 136(24), 5134-5138. https://doi.org/10.1039/c1an15772h
  74. D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Electroanalysis, 2010, 22(17-18), 2001-2008. https://doi.org/10.1002/elan.201000094
  75. W. Sun, X. Wang, Y. Wang, X. Ju, L. Xu, G. Li, Z. Sun, Electrochim. Acta, 2013, 87, 317-322. https://doi.org/10.1016/j.electacta.2012.09.050
  76. L. Tan, K.-G. Zhou, Y.-H. Zhang, H.-X. Wang, X.-D. Wang, Y.-F. Guo, H.-L. Zhang, Electrochem. Commun., 2010, 12(4), 557-560. https://doi.org/10.1016/j.elecom.2010.01.042
  77. P. He, W. Wang, L. Du, F. Dong, Y. Deng, T. Zhang, Anal. Chim. Acta, 2012, 739, 25-30. https://doi.org/10.1016/j.aca.2012.06.004
  78. Z. Wang, J. Xia, L. Zhu, X. Chen, F. Zhang, S. Yao, Y. Li, Y. Xia, Electroanalysis, 2011, 23(10), 2463-2471. https://doi.org/10.1002/elan.201100256
  79. M. Raj, P. Gupta, R. N. Goyal, Y.-B. Shim, Sensor Actuat. B: Chem., 2017, 239, 993-1002. https://doi.org/10.1016/j.snb.2016.08.083