• Title/Summary/Keyword: Graphene-Composites

Search Result 197, Processing Time 0.03 seconds

Preparation and capacitance behaviors of cobalt oxide/graphene composites

  • Park, Suk-Eun;Park, Soo-Jin;Kim, Seok
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.130-132
    • /
    • 2012
  • In this study, cobalt oxide ($Co_3O_4$)/graphene composites were synthesized through a simple chemical method at various calcination temperatures. We controlled the crystallinity, particle size and morphology of cobalt oxide on graphene materials by changing the annealing temperatures (200, 300, $400^{\circ}C$). The nanostructured $Co_3O_4$/graphene hybrid materials were studied to measure the electrochemical performance through cyclic voltammetry. The $Co_3O_4$/graphene sample obtained at $200^{\circ}C$ showed the highest capacitance of 396 $Fg^{-1}$ at 5 $mVs^{-1}$. The morphological structures of composites were also examined by scanning electron microscopy and transmission electron microscopy (TEM). Annealing $Co_3O_4$/graphene samples in air at different temperatures significantly changed the morphology of the composites. The flower-like cobalt oxides with higher crystallinity and larger particle size were generated on graphene according to the increase of calcination temperature. A TEM analysis of the composites at $200^{\circ}C$ revealed that nanoscale $Co_3O_4$ (~7 nm) particles were deposited on the surface of the graphene. The improved electrochemical performance was attributed to a combination effect of graphene and pseudocapacitive effect of $Co_3O_4$.

Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes

  • Kim, Jae Jin;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • Nanosized palladium particles were synthesized using palladium(II) chloride, trisodium citrate dihydrate, and sodium borohydride under stirring condition. Nanosized palladium-graphene composites were prepared from palladium nanoparticles, and graphene was enclosed with polyallylamine under stirring condition for 1 h followed by ultrasonication for 3 h. Nanosized palladium-graphene composites were heated in an electric furnace at $700^{\circ}C$ for 2 h and characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. UV-vis spectrophotometry was used to evaluate the nanosized palladium-graphene composites as a catalyst in the photocatalytic degradation of various organic dyes such as methylene blue, methyl orange, rhodamine B, and brilliant green under ultraviolet light at 254 nm.

Photothermoelectric Effect of Graphene-polyaniline Composites (그래핀-폴리 아닐린 복합체의 광열전 효과 연구)

  • Choi, Jongwan
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.434-439
    • /
    • 2021
  • Graphene and polyaniline with thermoelectric properties are one of the potential substitutes for inorganic materials for flexible thermoelectric applications. In this study, we studied the photo-induced thermoelectric effect of graphene-polyaniline composites. The graphene-polyaniline composites were synthesized by introducing an amine functional group to graphene oxide for covalently connecting graphene and polyaniline, reducing the graphene oxide, and then polymerizing the graphene oxide with aniline. Graphene-polyaniline composites were prepared by changing the aniline contents in order to expect an optimal photothermoelectric effect, and their structural properties were confirmed through FT-IR and Raman analysis. The photocurrent and photovoltage characteristics were analyzed by irradiating light asymmetrically without an external bias and the current and voltage with various aniline contents. While the photocurrent trends to the electrical conductivity of the graphene-polyaniline composites, the photovoltage was related to the temperature change of the graphene-polyaniline composite, which was converted into thermal energy by light.

Preparation of V2O5-Graphene Composites using Aerosol Process for Supercapacitors Application (에어로졸 공정을 이용한 오산화바나듐(V2O5)-그래핀 복합체 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.95-105
    • /
    • 2020
  • Vanadium Pentoxide (V2O5) has been emerged as alternative electrode materials for supercapacitors due to their low cost, natural abundance, and environmental friendliness. Graphene (GR) loaded with V2O5 can exhibit enhanced specific capacitance. In this study, we present three-dimensional (3D) crumpled graphene (CGR) decorated with V2O5. The V2O5-graphene composites were synthesized from a colloidal mixture of graphene oxide (GO) and Ammonium metavanadate (NH4VO3), via aerosol spray drying and post heat treatment process. The average size of composite was ranged from 1.82 to 4.6 ㎛. Morphology of the composite changed from a crumpled paper ball to spherical ball having relatively smooth surface as the content of V2O5 increased in the composites. The electrochemical performance of the V2O5-graphene composites was examined. The V2O5-graphene composite electrode showed the specific capacitance of 312 F/g. In addition, the device possessed acceptable cyclic stability, with 84% after 2000 cycles at 2 A/g. These outstanding properties are expected to make the composites prepared in this study as promising electrode materials for supercapacitor applications.

Synthesis and Characterization of Metal (Pt, Pd and Fe)-graphene Composites

  • Chen, Ming-Liang;Park, Chong-Yeon;Choi, Jong-Geun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • In this study, we prepared graphene by using the modified Hummers-Offeman method and then introduced the metals (Pt, Pd and Fe) for dispersion on the surface of the graphene for synthesis of metal-graphene composites. The characterization of the prepared graphene and metal-graphene composites was performed by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM). According to the results, it can be observed that the prepared graphene consists of thin stacked flakes of shapes having a well-defined multilayered structure at the edge. And the metal particles are dispersed uniformly on the surface of the graphene with an average particle size of 20 nm.

Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites (초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질)

  • In-Jin Shon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

  • Kim, Y.;Song, W.;Lee, S.Y.;Jung, W.;Kim, M.K.;Jeon, C.;Park, C.Y.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.80-80
    • /
    • 2010
  • Graphene has attracted tremendous attention for the last a few years due to it fascinating electrical, mechanical, and chemical properties. Up to now, several methods have been developed exclusively to prepare graphene, which include micromechanical cleavage, polycrystalline Ni employing chemical vapor deposition technique, solvent thermal reaction, thermal desorption of Si from SiC substrates, chemical routes via graphite intercalation compounds or graphite oxide. In particular, polycrystalline Ni foil and conventional chemical vapor deposition system have been widely used for synthesis of large-area graphene. [1-3] In this study, synthesis of mono-layer graphene on a Ni foil, the mixing ratio of hydrocarbon ($CH_4$) gas to hydrogen gas, microwave power, and growth time were systemically optimized. It is possible to synthesize a graphene at relatively lower temperature ($500^{\circ}C$) than those (${\sim}1000^{\circ}C$) of previous results. Also, we could control the number of graphene according to the growth conditions. The structural features such as surface morphology, crystallinity and number of layer were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), transmission electron microscopy (TEM) and resonant Raman spectroscopy with 514 nm excitation wavelength. We believe that our approach for the synthesis of mono-layer graphene may be potentially useful for the development of many electronic devices.

  • PDF

Improved Electrical Properties of Graphene Transparent Conducting Films Via Gold Doping

  • Kim, Yoo-Seok;Song, Woo-Seok;Kim, Sung-Hwan;Jeon, Cheol-Ho;Lee, Seung-Youb;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.388-388
    • /
    • 2011
  • Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. The physical properties of graphene depend directly on the thickness. These properties lead to the possibility of its application in high-performance transparent conducting films (TCFs). Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ~60 ${\Omega}/sq$ and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. Here, we report an ingenious strategy, irradiation of MeV electron beam (e-beam) at room temperature under ambient condition,for obtaining size-homogeneous gold nanoparticle decorated on graphene. The nano-particlization promoted by MeV e-beam irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping, and energy dispersive X-ray spectroscopy. These results clearly revealed that gold nanoparticle with 10~15 nm in mean size were decorated along the surface of the graphene after 1.0 MeV-e-beam irradiation. The fabrication high-performance TCF with optimized doping condition showed a sheet resistance of ~150 ${\Omega}/sq$ at 94% transmittance. A chemical transformation and charge transfer for the metal gold nanoparticle were systematically explored by X-ray photoelectron spectroscopy and Raman spectroscopy. This approach advances the numerous applications of graphene films as transparent conducting electrodes.

  • PDF

Raman spectroscopy study of graphene on Ni(111) and Ni(100)

  • Jung, Dae-Sung;Jeon, Cheol-Ho;Song, Woo-Seok;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene is a 2-D sheet of $sp^2$-bonded carbon arranged in a honeycomb lattice. This material has attracted major interest, and there are many ongoing efforts in developing graphene devices because of its high charge mobility and crystal quality. Therefore clear understanding of the substrate effect and mechanism of synthesis of graphene is important for potential applications and device fabrication of graphene. In a published paper in J. Phys. Chem. C (2008), the effect of substrate on the atomic/electronic structures of graphene is negligible for graphene made by mechanical cleavage. However, nobody shows the interaction between Ni substrate and graphene. Therefore, we have studied this interaction. In order to studying these effect between graphene and Ni substrate, We have observed graphene synthesized on Ni substrate and graphene transferred on $SiO_2$/Si substrate through Raman spectroscopy. Because Raman spectroscopy has historically been used to probe structural and electronic characteristics of graphite materials, providing useful information on the defects (D-band), in-plane vibration of sp2 carbon atoms (G-band), as well as the stacking orders (2D-band), we selected this as analysis tool. In our study, we could not observe the doping effect between graphene and Ni substrate or between graphene and $SiO_2$/Si substrate because the shift of G band in Raman spectrum was not occurred by charge transfer. We could noticed that the bonding force between graphene and Ni substrate is more strong than Van de Waals force which is the interaction between graphene and $SiO_2$/Si. Furthermore, the synthesized graphene on Ni substrate was in compressive strain. This phenomenon was observed by 2D band blue-shift in Raman spectrum. And, we consider that the graphene is incommensurate growth with Ni polycrystalline substrate.

  • PDF

Enhanced Photocatalytic Properties of Visible Light Responsive La/TiO2-Graphene Composites for the Removal of Rhodamin B in Water

  • Areerob, Yonrapach;Oh, Won-Chun
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.168-178
    • /
    • 2017
  • $La/TiO_2$ - graphene composites were synthesized in this study, and applied to the photocatalytic degradation of Rhodamine B (RhB) under UV-visible light irradiation. X-ray diffraction (XRD), surface analysis, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) analysis demonstrated that $La/TiO_2$ nanoparticles were well distributed on the surface of graphene, and formed the heterostructure of $La/TiO_2$-graphene. Compared to the pure $TiO_2$, $La/TiO_2$-graphene composites displayed much higher photocatalytic activities in RhB degradation under UV-visible light irradiation. The photocatalytic data of $La/TiO_2$-graphene composites exhibit extended light absorption in the visible light region, and possess better charge separation capability than that of pure $TiO_2$. The high photocatalytic activity was attributed to the composite's high adsorptivity, extended light absorption, and increased charge separation efficiency, due to the excellent electrical properties of graphene, and the large surface contact between graphene and $La/TiO_2$ nanoparticles.