• Title/Summary/Keyword: $L_2$ 이득

Search Result 224, Processing Time 0.022 seconds

A New Process for a High Performance $I^2L$ (고성능 $I^2L$을 위한 새로운 제작공정)

  • Han, Cheol-Hui;Kim, Chung-Gi;Seo, Gwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 1981
  • A new I2L process for a high performance I2L structure is proposed. The modifiedstructure consists of a heavily doped extrinsic base and lowly doped intrinsic base where the collector regions are self-alignment with the intrinsic base regions. The proposed process untilizes spin-on sources as the diffusion sources and the self-alignment of collectors is achieved by using the hardened spin-on source as a diffusion mask. Test devices including a 13-stage ring oscillator have been fabricated by the proposed process on n/n+ silicon wafers with 6.5$\mu$m epitaxial layer. The maximum upward current gain of npn transistors is 8 for a three collector I2L cell. The speed-power product and minimum propagation delay for a one collector structure are 3.5 pJ and 50 ns, respectively.

  • PDF

Dual-Polarized 2 X 2 Array Antenna for Wireless LAN (무선 LAN용 이중 편파 2 X 2 배열 안테나)

  • 송성찬;이택경
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.7
    • /
    • pp.635-643
    • /
    • 2004
  • In this paper, dual-polarized 2${\times}$2 array antenna is designed and fabricated for the polarization diversity applications in wireless LAN system. For the improved bandwidth and isolation characteristics, the aperture coupled feeding and the L-shaped probe feeding are employed for each polarization. The measured bandwidths of the fabricated antenna are 210MHz for aperture coupled feeding and 280MHz for L-shaped probe feeding. The isolation for two ports is -40dB and the antenna gain is measured as 14.3${\pm}$0.2dBi in the operating frequency band of wireless LAN.

Design of a 1V 5.25GHz SiGe Low Noise Amplifier (1V 5.25GHz SiGe 저잡음 증폭기 설계)

  • 류지열;노석호;박세현;박세훈;이정환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.630-634
    • /
    • 2004
  • This paper describes the design of a two stage 1V power supply SiGe Low Noise Amplifier operating at 5.25 GHa for 802.lla wireless LAN application. The achieved performance includes a gain of 17 ㏈, noise figure of 2.7㏈, reflection coefficient of 15 ㏈, IIP3 of -5 ㏈m, and 1-㏈ compression point of -14㏈m. The total power consumption of the circuit was 7 mW including 0.5mW for the bias circuit.

  • PDF

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

이동통신 단말기용 안테나

  • 김종규
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.2-11
    • /
    • 2001
  • The L-shaped strip is shown to be an attractive feed for the thick mierostrip antenna (thickness around 10% of the operating wavelength). The L-strip incorporated with the radiating patch introduces a capacitance suppressing some of the inductance introduced by the strip itself. In this paper, a wideband microstrip patch antenna fed by L-strip for the PCS ($1,750{\sim}1,850MHz$) and IMT-2000 ($1,920{\sim}2,170MHz$) broad-band is presented. A two-element array fed by L-strip is also proposed. Both the antennas have stable radiation patterns across the passband. The impedance bandwidth is over 31% (VSWR < 1.5, 615 MHz) of the center frequency. Moreover, both the antennas have about 7 dBi average gain.

  • PDF

Design of patch antenna combined with slots for smart GPS module (Smart GPS 모듈용 슬롯과 결합된 패치안테나 설계)

  • Jang, Min-Gyu;Lee, Young-Soon;Cho, Dong-Kyun
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.177-182
    • /
    • 2013
  • In this paper, printed antenna which can be applied to a built-in wireless module of the security controller operating at global positioning system(GPS) L1 frequency band(1.575GHz) is proposed. The proposed antenna is basically composed of a microstrip patch antenna with inserting feed. In particular left and right slots which are respectively asymmetric are used for impedance matching, whereas slot with one open-end and shorting point are used on the bottom plane to set operating frequency and enhance bandwidth. It is observed at the desired GPS L1 frequency band that the radiation efficiency and gain of the proposed antenna are 90% and more than 4.8dBi respectively.

A Process Detection Circuit using Self-biased Super MOS composit Circuit (자기-바이어스 슈퍼 MOS 복합회로를 이용한 공정 검출회로)

  • Suh Benjamin;Cho Hyun-Mook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, a new process detection circuit is proposed. The proposed process detection circuit compares a long channel MOS transistor (L > 0.4um) to a short channel MOS transistor which uses lowest feature size of the process. The circuit generates the differential current proportional to the deviation of carrier mobilities according to the process variation. This method keep the two transistor's drain voltage same by implementing the feedback using a high gain OPAMP. This paper also shows the new design of the simple high gam self-biased rail-to-rail OPAMP using a proposed self-biased super MOS composite circuit. The gain of designed OPAMP is measured over 100dB with $0.2{\sim}1.6V$ wide range CMR in single stage. Finally, the proposed process detection circuit is applied to a differential VCO and the VCO showed that the proposed process detection circuit compensates the process corners successfully and ensures the wide rage operation.

  • PDF

A Design of Printed square Loop Antenna for Omni-diractional Radiation Patterns (전방향 복사페턴의 인쇄형 사각 루-프안테나 설계)

  • 이현진;차상진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.93-98
    • /
    • 2003
  • In this paper, we designed a printed square loop antenna for operating of PCS and IMT2000 band. The proposed antenna has omni-directional radiation patterns with broad bandwidth, similar to the conventional antenna, to easy feed on composing single planar. We obtain an ideal impedance matching and increase bandwidth. An antenna bandwidth is about 150MHz(1.74∼l.89〔GHz〕) at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5, and then we can obtain not only 1.73∼l.87 〔GHz〕 PCS band but also 1.92∼2.17 (GHz) IMT2000 band. band.

A Study on Design and Implementation of Low Noise Amplifier for Satellite Digital Audio Broadcasting Receiver (위성 DAB 수신을 위한 저잡음 증폭기의 설계 및 구현에 관한 연구)

  • Jeon, Joong-Sung;You, Jae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.213-219
    • /
    • 2004
  • In this paper, a LNA(Low Noise Amplifier) has been developed, which is operating at L-band i.e., 1452∼1492 MHz for satellite DAB(Digital Audio Brcadcasting) receiver. The LNA is designed to improve input and output reflection coefficient and VSWR(Voltage Standing Wave Ratio) by balanced amplifier. The LNA consists of low noise amplification stage and gain amplification stage, which make a using of GaAs FET ATF-10136 and VNA-25 respectively, and is fabricated by hybrid method. To supply most suitable voltage and current, active bias circuit is designed Active biasing offers the advantage that variations in $V_P$ and $I_{DSS}$ will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets $V_{gs}$ for the desired drain voltage and drain current. The LNA is fabricated on FR-4 substrate with RF circuit and bias circuit, and integrated in aluminum housing. As a reults, the characteristics of the LNA implemented more than 32 dB in gain. 0.2 dB in gain flatness. lower than 0.95 dB in noise figure, 1.28 and 1.43 each input and output VSWR, and -13 dBm in $P_{1dB}$.

Design of a Multi-band Internal Antenna Using Half Wavelength Loaded Line Structure for Mobile Handset Applications (반파장 로디드 라인 구조를 이용한 이동 통신 단말기용 다중 대역 내장형 안테나 설계)

  • Shin Hoo;Jung Woo-Jae;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.12 s.103
    • /
    • pp.1179-1185
    • /
    • 2005
  • In this paper, novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880${\~}$960 MHz), GPS(1,575$\pm$10 MHz), DCS(1,710${\~}$1,880 MHz), US-PCS(1,850${\~}$l,990 MHz), and W-CDMA(1,920${\~}$2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line and a shorted monopole. A single shorting and feeding points are used and they are common to both antenna structures. By controlling a value of lumped inductance element between shorting point and ground plane, the antenna provides enough bandwidth to cover DCS, US-PCS, and W-CDMA respectively. When these higher bands are controlled by the values of inductance, resonant characteristics in GSM and GPS bands are maintained. In this work, maximum value of the inductor is limited within 3.3 nH to mitigate gain degradation from frequency tuning. As a result, measured maximum gain of antenna is -0.58${\~}$-0.30 dBi in the GSM band, -0.57${\~}$0.43 dBi in the GPS band and 0.38${\~}$1.15 dBi in the DCS/US-PCS/W-CDMA band. In higher band, the proposed antenna is certified that resonant frequency of about 240 MHz can be effectively controlled within gain variation of about 0.77 dB by simulation and measurement.