• Title/Summary/Keyword: $K_0$ 압밀조건

Search Result 23, Processing Time 0.022 seconds

$K_0$ Values and Shear Strengths under $K_0$ Consolidated Triaxial Test According to Matric Suction for an Unsaturated Soil (불포화토의 $K_0$ 압밀 삼축압축실험시 모관흡수력에 따른 정지토압계수 및 전단강도에 관한 연구)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.89-98
    • /
    • 2008
  • In this study, the behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and stress paths under consolidation and stress-strain relationships under shear were obtained. As a result, the $K_0$ value decreased as the matric suction increased. Besides, both isotropic and $K_0$ conditions had similar shear strength envelopes at the same matric suction. Especially, strength parameters could be obtained by stress variables used in the critical state theory more reasonably than by those of Mohr circles at failure.

Effect of K0-Consolidation in Behavior of Normally Consolidated Clay (정규압밀점토(正規壓密粘土)의 거동(擧動)에 미치는 K0-압밀효과(壓密効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.183-193
    • /
    • 1987
  • After clay particles have been sedimented isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the effect of $K_0$-consolidation should be considered. A series of undrained and drained triaxial compression tests was performed on remolded specimens of clay consolidated under both $K_0$-and isotropic stress systems and the effect of $K_0$-consolidation was investigated. $K_0$-consolidation has much effect on the deviator stress, especially at initial deformation stage of consolidated-undrained tests, but has little effect on the principal effective stress ratio. Thus, the undrained strength behavior of $K_0$-consolidated samples can not be predicted from isotropically consolidated test data. However, the failure envelop, provided by the maximum principal effective stress ratio failure criterion, is unique and curved.

  • PDF

A Characteristic of Deformation and Strength of Domestic Sands by Triaxial Compression Tests (삼축압축시험에 의한 국내 모래의 변형-강도 특성)

  • Park, Choon Sik;Kim, Jong Hwan;Park, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.515-527
    • /
    • 2014
  • This study conducted experiment for understanding engineering characteristics of domestic sands by examining standard sand and sand from Yokji Island and Nakdong River in terms of confining pressure, $K_0$, over consolidation and relative density factors through triaxial compression test. The test showed that deviator stress by strain positively changed as confining pressure and relative density grow while $K_0$ and over consolidation factors do not directly correlated with it. Angle of internal friction decreases as confining pressure increases which strengthens contact force between particles, and declines as relative density drops, whereas $K_0$ and over consolidation factors hardly affect the results. When it comes to volumetric strain, volume expansion decreases as confining pressure increase due to crushability and rearrangement of particles while $K_0$ and over consolidation shows same movement unconditionally, and relative density appears compressed as it grows at the beginning however it expands as axial strain increases. Modulus of elasticity ($E_{sec}$) by strain has tendency into convergence resulting in initial secant modulus of elasticity ($E_{ini}$) > secant modulus of elasticity($E_{sec}$) > tangent modulus of elasticity ($E_{tan}$). On the other hand, it grows as confining pressure and relative density increase while indicating similar modulus of elasticity ($E_{sec}$) regarding on $K_0$ and over consolidation. Slope of critical line (M) tended to decrease as confining pressure increases, follow same line according to $K_0$, confining pressure and relative density, and increase as relative density grows.

The Relationship Between Effective Stress and Shear Strength of Weathered Granite Soils Based on Matric Suctions (모관흡수력에 따른 화강풍화토의 유효응력과 전단강도의 관계)

  • Lee, Younghuy;Oh, Seboong;Kim, Kwanghyun;Seong, Yulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • The shear strength of weathered granite soils under unsaturated condition was evaluated by $K_0$ consolidated triaxial tests. Various matric suctions in the unsaturated triaxial tests were applied using suction-controlled triaxial test apparatus for weathered granite soils obtained in Daegu. Soil water characteristic curve (SWCC) laboratory tests for drying and wetting procedure were performed and van Genuchten curves were fitted by experimental results. The contribution of matric suction in unsaturated soils is directly correlated to effective stress and evaluated from SWCCs. The effective stresses were estimated from these SWCCs and the relationship between effective stress and unsaturated shear strength was determined. In the effective stress description, the unsaturated shear strength with respect to various suctions indicates unique relationship and almost the same as that of the saturated envelope.

The Mechanical Properties of Heat-Compressed Radiata Pine (Pinus radiata D.Don) by Compression Set (열압밀화 라디에타 소나무재의 압축세트량에 따른 역학적 특성)

  • Hwang, Sung-Wook;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The mechanical properties of heat-compressed Radiata pine (Pinus radiata D.Don) by compression set were investigated. Heat-compression condition was temperature at $180^{\circ}C$ and press time for 60 minutes. The mechanical properties of heat-compressed wood increased with increasing compression set. Increase of the specific gravity has led to increase in mechanical properties. The maximum compression set of Radiata pine was investigated approximately 65%. It was almost same result with porosity 68% of Radiata pine in specific gravity 0.48.

A Fundamental Study on Evaluation of Corrected Compression Index by Plasticity Index in Marine Clayey Soils (해성 점성토의 소성지수에 따른 보정압축지수 평가에 관한 기초연구)

  • Park, Seong-Bak;Lee, Kang-Il;Seo, Se-Gwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.9-18
    • /
    • 2018
  • The soil parameters important for the design of the soft ground are the compression index ($C_c$), the consolidation settlement and consolidation speed at the field. Compression index is obtained by laboratory consolidation test. In the laboratory consolidation test, sample disturbance always occurs. In order to correct the disturbance phenomena, the method of calculating the compression index proposed by Schmertmann (1955) is generally used. However, recent developments in sampling technology and Korean soil conditions are different from those proposed by Schmertmann. So it needs to be verified. In this study, each consolidation curve's cross void ratio is evaluated by doing consolidation test varying disturbance on high-plastic clay (CH), low-plastic clay (CL) and low-plastic silt (ML). The test results were $0.521e_0$ for low-plastic silt, $0.404e_0$ for low-plastic clay, and $0.458e_0$ for the high-plastic clay. This results were different from those of Schmertmann's suggested value of $0.42e_0$. Therefor we proposed a correction formula using the plastic index according to soil type. However, since the results of this study are limited test results, further studies on various korean soil are needed to suggest the compression index correction method according to the degree of plasticity index of soil.

Evaluation of Preconsolidation Stress Considering Small-Strain Shear Wave Velocity (미소변형 전단파 속도를 고려한 설행압밀하중 산정)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.5-16
    • /
    • 2009
  • Preconsolidation stress is one of the important design parameters in soft soils because the behavior of saturated soft soils changes dramatically at the preconsolidation stress. For the estimation of preconsolidation stress, the global vertical settlement without considering micro strain behavior has been considered. The purpose of this study is to propose and verify a new method called the "shear wave velocity method" for determination of the preconsolidation stress reflecting on particle behavior at the small-strain. In this study, the undisturbed soft soils obtained at Busan, Incheon and Gwangyang in Korea were used. The oedometer cell incoporated with the bender elements is used for the consolidation tests under the $K_0$ condition. The preconsolidation stress determined by the proposed method is compared with that estimated by Casagrande (e-log p'), Sridharan (log (1+e)-log p'), and Onitsuka (In(1+e)-log p') methods. This study suggests that the shear wave velocity method may determine simply the preconsolidation stress with considering the small-strain behavior.

An Analysis of the Effect of PBD Discharge Capacity to Leave Period (방치기간에 따른 PBD의 통수능 효과 분석)

  • Lee, Keeyong;Park, Minchul;Jeong, Sangguk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.39-49
    • /
    • 2011
  • Recently PBD method, one of acceleration of consolidation methods is used in the soft ground to shorten consolidation time for fast settlement during construction. It is economical and easy to work. Discharge capacity of PBD is sensitive in proportion to thickness of soft ground layer, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity is large according to ground condition, construction condition and soil properties. In addition, when embankment loading is not conducted instantly after PBD setting due to rain or lack of embankment material supply, it causes leaving period problems. But cause and analysis of those problems for discharge capacity is lack. So, in this test, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with leaving period. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. Then leave 0day, 30day, 60day and 90day. And then, load following the loading step of 30, 70 and 120kPa using a pressure device. As a result, the longer leaving period, discharge capacity is reduced. It is caused by a decrease of discharge area caused by creep transformation moisture absorption of PBD filter after long leaving period.

Ring Shear Characteristics of Two Different Soils (이질 재료 간의 링 전단특성 연구)

  • Park, Sung-Sik;Jeong, Sueng-Won;Yoon, Jun-Han;Chae, Byung-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.39-52
    • /
    • 2013
  • The shear stress characteristics of landslide materials can be affected by various factors. We examined the shear stress characteristics of two different soils using ring-shear apparatus, in which saturation-consolidation-shearing speed can be easily controlled. This paper presents (i) shear stress-time characteristics, (ii) shear stress depending on normal stress and shear speed and (iii) shear stress as a function of shearing speed. Materials used in this paper were the Nakdong River sand and muds taken from Jinhae coastal area in Korea. Samples were prepared in three types: Sand (upper)-Sand (lower), Clay (upper)-Clay (lower) and Sand (upper)-Clay (lower). The upper and lower indicate the samples placed in upper and lower ring shear boxes, respectively. For given normal stresses (50 and 100 kPa) and shearing speed (0.1 mm/sec), we performed ring shear tests. Then the failure lines were determined in the second test. Last, we determined the shear stress characteristics depending on different shearing speeds, such as 0.01, 0.1, 1, 10, 100 mm/sec. As a result, we found that shear stress characteristics are strongly dependent on above three factors. The shear stress of Sand (upper)-Clay (lower) is smaller than that of Sand (upper)-Sand (lower), but slightly larger than that of Clay (upper)-Clay (lower). The shear stress is also characterized by grain crushing and wetting process at slip surface.

A Prediction of Undrained Shear Behavior of the Remolded Weathered Mudstone Soil Using the Constitutive Model (구성모델을 이용한 재성형 이암풍화토의 비배수 전단거동 예측)

  • Lee Sang-Woong;Choo In-Sig;Kim Young-Su;Kim Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2005
  • This study proposed a new yield function considering the spacing ratio of the critical state to predict the undrained shear behavior of anisotropic field ground. We have suggested a nonassociated constitutive model that used a newly modified plastic potential function in order to apply the yield function of the modified Cam-Clay model to the anisotropic consolidation. In this paper, we predicted undrained shear behavior of the remolded weathered mudstone soils in Phohang isotorpically and anisotropically consolidated using the suggested model. To evaluate the reliability of proposed model, we predictied undrained shear behavior of Bankok Clay isotropically, nomally consolidated and Drammen Clay Ko consolidated. The predicted results are consistent with the observed behavior.