DOI QR코드

DOI QR Code

A Characteristic of Deformation and Strength of Domestic Sands by Triaxial Compression Tests

삼축압축시험에 의한 국내 모래의 변형-강도 특성

  • Received : 2013.10.31
  • Accepted : 2014.02.05
  • Published : 2014.04.01

Abstract

This study conducted experiment for understanding engineering characteristics of domestic sands by examining standard sand and sand from Yokji Island and Nakdong River in terms of confining pressure, $K_0$, over consolidation and relative density factors through triaxial compression test. The test showed that deviator stress by strain positively changed as confining pressure and relative density grow while $K_0$ and over consolidation factors do not directly correlated with it. Angle of internal friction decreases as confining pressure increases which strengthens contact force between particles, and declines as relative density drops, whereas $K_0$ and over consolidation factors hardly affect the results. When it comes to volumetric strain, volume expansion decreases as confining pressure increase due to crushability and rearrangement of particles while $K_0$ and over consolidation shows same movement unconditionally, and relative density appears compressed as it grows at the beginning however it expands as axial strain increases. Modulus of elasticity ($E_{sec}$) by strain has tendency into convergence resulting in initial secant modulus of elasticity ($E_{ini}$) > secant modulus of elasticity($E_{sec}$) > tangent modulus of elasticity ($E_{tan}$). On the other hand, it grows as confining pressure and relative density increase while indicating similar modulus of elasticity ($E_{sec}$) regarding on $K_0$ and over consolidation. Slope of critical line (M) tended to decrease as confining pressure increases, follow same line according to $K_0$, confining pressure and relative density, and increase as relative density grows.

본 연구에서는 국내 모래의 공학적 특성을 파악하기 위하여 표준사, 욕지사, 낙동강사를 이용하여 구속압 조건, $K_0$ 조건, 과압밀 조건, 상대밀도 조건을 다르게하여 삼축압축시험을 실시하였다. 삼축압축시험 결과, 변형률 ${\epsilon}_1$에 따른 축차응력 $\acute{q}$의 변화는 구속압 ${\sigma}_3$와 상대밀도 $D_r$이 클수록 크게 변화하였으나, $K_0$ 조건과 과압밀 조건변화와 크게 상관이 없었다. 모래의 최대 내부마찰각(${\phi}_{max}$)은 구속압이 클수록 입자간의 접촉력이 크게 되어 작아지는 경향을 나타내었고, $K_0$ 조건과 과압밀 조건에 따라서는 거의 변화가 없는 것으로 나타났으며, 상대밀도에 따라서는 상대밀도가 감소함에 따라 내부마찰각도 작아지는 경향을 나타내었다. 체적변형률(${\epsilon}_u$)은 구속압이 클수록 입자의 파쇄성과 입자간의 재배열에 의해 체적 팽창이 작게 나타났으며, $K_0$ 조건과 과압밀 조건에서는 조건에 상관없이 거의 같은 거동을 보였고, 상대밀도에 따라서는 상대밀도가 커질수록 초기에는 압축되다가 축변형률(${\epsilon}_1$)이 증가할수록 팽창하는 경향이 뚜렷하게 나타났다. 변형률 변화에 따른 탄성계수 $E_{sec}$는 변형률이 커질수록 차츰 수렴하는 경향을 나타내었고, 축차응력($\acute{q}$)-변형률(${\epsilon}_1$) 관계에서 초기할선 탄성계수($E_{ini}$)>할선 탄성계수($E_{sec}$)>접선 탄성계수($E_{tan}$) 순으로 탄성계수의 크기가 산정되었으며, 구속압 및 상대밀도가 증가함에 따라 탄성계수가 증가하는 경향을 보였고, $K_0$ 및 과압밀에 따라서는 거의 비슷한 탄성계수를 나타내었다. 접선 탄성계수에 의한 정규화에 대해서는 다양한 증가비로 증가하는 경향을 보였다. 한계상태선의 기울기 M은 구속압이 증가함에 따라 감소하는 경향을 나타내었고, $K_0$ 및 구속압, 상대밀도에 따라서는 동일선상에 표현되며, 상대밀도가 증가할수록 한계상태선의 기울기 M도 증가하는 경향을 보였다.

Keywords

References

  1. Ahn, B. H. (2002). A study on the characteristics of the jumunjin standard sand by triaxial compression tests, M.Eng. Dissertation, Changwon University (in Korean).
  2. Arthur, J. R. F. and Dalili, A. (1979). "On the lubrication of rubber surfaces." Geotechnique, Vol. 29, No. 1, pp. 96-98. https://doi.org/10.1680/geot.1979.29.1.96
  3. Bae, S. H. (2002). Deformation and strength characteristics of jumunjin standard sand by triaxial tests, M.Eng. Dissertation, Changwon University (in Korean).
  4. Bolton, M. D. (1986). "The strength and dilatancy of sands." Geotechnique, Vol. 36, No. 1, pp. 65-78. https://doi.org/10.1680/geot.1986.36.1.65
  5. Cha, B. G. (2010). Unsaturated shear strength characteristics of Nak-Dong river silty sand, M.Eng. Dissertation, Kyungpook University (in Korean).
  6. Fukushima, S. and Tatsuoka, F. (1984). "Strength and deformation characteristics of saturated sand as extremely low pressures." Soils and Foundations, Japanese Geotechnical Society, Vol. 24, No. 4, pp. 30-48. https://doi.org/10.3208/sandf1972.24.4_30
  7. Hetter, A. and Vardoulakis, I. (1984). "Behaviour of dry sand tested in a large triaxial apparatus." Geotechnique, Vol. 34, No. 2, pp. 183-198. https://doi.org/10.1680/geot.1984.34.2.183
  8. Ju, J. W., Park, C. S. and Choi, H. N. (1998). "Triaxial test of Jumunjin standard sand according to the relative density." Proceeding of 1998 Annual Conference, Vol. 1998, No. 2, pp. 73-76 (in Korean).
  9. Jung, K. J. (2002). A study on the shear characteristics of a sand by constant volume triaxial compression test, M.Eng. Dissertation, Honam University (in Korean).
  10. Kim, H. J., Lee, K. S. and Lee, J. H. (2005). "Strength and stiffness of silty sands with different over consolidation ratios and water contents." Journal of the Korean Geotechnical Society, Vol. 21, No. 9, pp. 53-72 (in Korean).
  11. Lee, Y. S. (2002). "An experimental study on the effect of stress path on the shear strength of sand." Journal of the Korean Society of Civil Engineers, Vol. 22, No. 3, pp. 345-354 (in Korean).
  12. Park, C. S. (1997). "Anisotropy in strength and deformation properties of a variety of sands by plane strain compression tests(I)." Journal of the Korean Geotechnical Society, Vol. 13, No. 5, pp. 5-18 (in Korean).
  13. Park, C. S. (1998). "Anisotropy in strength and deformation properties of a variety of sands by plane strain compression tests(II)." Journal of the Korean Geotechnical Society, Vol. 14, No. 4, pp. 33-45 (in Korean).
  14. Park, C. S. and Jang, J. W. (1998). "Lubrication of specimen ends for granular materials in element tests." Journal of the Korean Society of Civil Engineers, Vol. 18, No. 3-5, pp. 689-698 (in Korean).
  15. Park, C. S. and Jang, J. W. (2001). "A study of a variety of sands in poission's ratio by plane strain compression tests." Journal of the Korean Society of Civil Engineers, Vol. 21, No. 6-C, pp. 671-680 (in Korean).
  16. Park, C. S. and Jang, J. W. (2002). "A study of a variety of sands in stress-dilatancy relationships." Journal of the Korean Geotechnical Society, Vol. 18, No. 1, pp. 41-48 (in Korean).
  17. Park, C. S., Tatsuoka, F., Jang, J. W. and Chung, S. G. (1994). "Confining pressure-dependency on deformation and strength properties of sands in plane strain compression." Journal of the Korean Society of Civil Engineers, Vol. 14, No. 3, pp. 543-551 (in Korean).
  18. Raju Baiju (2008). A study on deformation characteristics of standard joomunjin sand in triaxial tests, M.Eng. Dissertation, Chonbuk University.
  19. Rowe, P. W. and Barden, L. (1964). "Importance of free ends in trixial testing." Journal of Soil Mechanics & Foundations Div., ASCE, Vol. 90, No. SM1, pp. 1-27.
  20. Seok, J. S. (2008). A study on the stress-dilatancy of domestic sands by the triaxial compression test, Ph.D. Dissertation, Changwon University (in Korean).
  21. Seong, Y. H. (2010). Triaxial compression characteristics of unsaturated silty sands, M.Eng. Dissertation, Yeungnam University (in Korean).
  22. Song, H. D. (2010). Triaxial compression characteristics of unsaturated sands with particle size distribution, M.Eng. Dissertation, Yeungnam University (in Korean).
  23. Tatsuoka, F., Molenkamp, F., Torii, T. and Hino, T. (1984). "Behaviour of lubrication layers of platens in element tests." Soils and Foundations, Japanese Geotechnical Society, Vol. 24, No. 1, pp. 113-128. https://doi.org/10.3208/sandf1972.24.113
  24. Tatsuoka, F., Sakamoto, M., Kawamura, T. and Fkushima, S. (1986). "Strength and deformation characteristics of sand in plane strain compression at extremely low pressures." Soils and Foundations, Japanese Geotechnical Society, Vol. 26, No. 1, pp. 65-84. https://doi.org/10.3208/sandf1972.26.65