• 제목/요약/키워드: $In_2O_3$ gas sensor

Search Result 300, Processing Time 0.029 seconds

Car Exhaust Gas Detection and Self-Diagnosis System using ZigBee and CAN Communications (ZigBee와 CAN 통신을 이용한 자동차 배기가스 검출 및 자기진단 시스템)

  • Chun, Jong-Hun;Kim, Kuk-Se;Park, Jong-An
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.48-56
    • /
    • 2008
  • This study provides to car driver with car exhaust gas and sensor information which are car trouble code in engine and many sensors when the car has some problems. This is to provide car manager with many information of car sensors when we go to vehicle maintenance. For example, information of engine RPM, fuel system, intake air temperature, air flow sensors and oxygen sensors can provide to owner or garage, and also add to multimedia system for mp3 files and video files. This system consists of embedded linux system of low power while driving the car which uses OBD-II protocols and zigbee communication interface from CAN communication of car system to self-diagnosis embedded system of car. Finally, low power embedded system has a lot of application and OBD-II protocols for embedded linux system and CAN communication which get sensor informations of car control sensor system while driving the car.

  • PDF

Uncertainties of SO2 Vertical Column Density Retrieval from Ground-based Hyper-spectral UV Sensor Based on Direct Sun Measurement Geometry (지상관측 기반 태양 직달광 관측장비의 초분광 자외센서로부터 이산화황 연직칼럼농도의 불확실성 분석 연구)

  • Kang, Hyeongwoo;Park, Junsung;Yang, Jiwon;Choi, Wonei;Kim, Daewon;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.289-298
    • /
    • 2019
  • In this present study, the effects of Signal to Noise Ratio (SNR), Full Width Half Maximum (FWHM), Aerosol Optical Depth (AOD), $O_3$ Vertical Column Density ($O_3$ VCD), and Solar Zenith Angle (SZA) on the accuracy of sulfur dioxide Vertical Column Density ($SO_2$ VCD) retrieval have been quantified using the Differential Optical Absorption Spectroscopy (DOAS) method with the ground-based direct-sun synthetic radiances. The synthetic radiances produced based on the Beer-Lambert-Bouguer law without consideration of the diffuse effect. In the SNR condition of 650 (1300) with FWHM = 0.6 nm, AOD = 0.2, $O_3$ VCD = 300 DU, and $SZA=30^{\circ}$, the Absolute Percentage Difference (APD) between the true $SO_2$ VCD values and those retrieved ranges from 80% (28%) to 16% (5%) for the $SO_2$ VCD of $8.1{\times}10^{15}$ and $2.7{\times}10^{16}molecules\;cm^{-2}$, respectively. For an FWHM of 0.2 nm (1.0 nm) with the $SO_2$ VCD values equal to or greater than $2.7{\times}10^{16}molecules\;cm^{-2}$, the APD ranges from 6.4% (29%) to 6.2% (10%). Additionally, when FWHM, SZA, AOD, and $O_3$ VCD values increase, APDs tend to be large. On the other hand, SNR values increase, APDs are found to decrease. Eventually, it is revealed that the effects of FWHM and SZA on $SO_2$ VCD retrieval accuracy are larger than those of $O_3$ VCD and AOD. The SZA effects on the reduction of $SO_2$ VCD retrieval accuracy is found to be dominant over the that of FWHM for the condition of $SO_2$ VCD larger than $2.7{\times}10^{16}molecules\;cm^{-2}$.

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Characterization of CdSe Thin Film Using Chemical Bath Deposition Method (Chemical Bath Deposition 방법으로 제작한 CdSe 박막의 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.81-86
    • /
    • 1993
  • Polycrystalline CdSe thin films were grown on ceramic substrate using a chemical bath deposition (CBD) method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdSe polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdSe samples annealed in $N_{2}$ gas at $450^{\circ}C$ it was found hexagonal structure whose lattice parameters $a_{o}$ and $c_{o}$ were $4.302{\AA}$ and $7.014{\AA}$, respectively. Its grain size was about $0.3{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33 K and 200 K, and by polar optical scattering at temperature range of 200 K and 293 K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Maximum Power Point Tracking Method Without Input side Voltage and current Sensor of DC-DC Converter for Thermoelectric Generation (열전발전을 위한 DC-DC Converter의 입력측 전압·전류 센서없는 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.569-575
    • /
    • 2020
  • Recently, research on renewable energy technologies has come into the spotlight due to rising concerns over the depletion of fossil fuels and greenhouse gas emissions. Demand for portable electronic and wearable devices is increasing, and electronic devices are becoming smaller. Energy harvesting is a technology for overcoming limitations such as battery size and usage time. In this paper, the V-I characteristic curve and internal resistance of thermal electric devices were analyzed, and MPPT control methods were compared. The Perturbation and Observation (P&O) control method is economically inefficient because two sensors are required to measure the voltage and current of a Thermoelectric Generator(TEG). Therefore, this paper proposes a new MPPT control method that tracks MPP using only one sensor for the regulation of the output voltage. The proposed MPPT control method uses the relationship between the output voltage of the load and the duty ratio. Control is done by periodically sampling the output voltage of the DC-DC converter to increase or decrease the duty ratio to find the optimal duty ratio and maintain the MPP. A DC-DC converter was designed using a cascaded boost-buck converter, which has a two-switch topology. The proposed MPPT control method was verified by simulations using PSIM, and the results show that a voltage, current, and power of V=4.2 V, I=2.5 A, and P=10.5 W were obtained at the MPP from the V-I characteristic curve of the TEG.

Growth of Thin Film Using Chemical Bath Deposition Method and Their Photoconductive Characteristics (CBD 방법에 의한 CdS 박막의 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.;You, S.H.;Suh, S.S.;Moon, J.D.;Shin, Y.J.;Jeoung, T.S.;Shin, H.K.;Kim, T.S.;Song, J.H.;Rheu, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.3-10
    • /
    • 1993
  • Polycrystalline CdS thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study CdS polycrystal structure. Using extrapolation method of X-ray diffraction patterns for the CdS samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure whose lattice constants $a_{o}$ and $c_{o}$ were $4.1364{\AA}$ and $6.7129{\AA}$, respectively. Its grain size was about $0.35{\mu}m$. Hall effect on this sample was measured by Van der Pauw method and studied on carrier density and mobility defending on temperature. From Hall data, the mobility was likely to be decreased by piezo electric scattering at temperature range of 33K and 150k and by polar optical scattering at temperature range of 150K and 293K. We measured also spectral response, sensitivity (${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Characteristics of a planar Bi-Sb multijunction thermal converter with Pt-heater (백금 히터가 내장된 평면형 Bi-Sb 다중접합 열전변환기의 특성)

  • Lee, H.C.;Kim, J.S.;Ham, S.H.;Lee, J.H.;Lee, J.H.;Park, S.I.;Kwon, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.154-162
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter with high thermal sensitivity and small ac-dc transfer error has been fabricated by preparing the bifilar thin film Pt-heater and the hot junctions of thin film Bi-Sb thermopile on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-diaphragm, which functions as a thermal isolation layer, and the cold junctions on the dielectric membrane supported with the Si-substrate, which acts as a heat sink, and its ac-dc transfer characteristics were investigated with the fast reversed dc method. The respective thermal sensitivities of the converter with single bifilar heater were about 10.1 mV/mW and 14.8 mV/mW in the air and vacuum, and those of the converter with dual bifilar heater were about 5.1 mV/mW and 7.6 mV/mW, and about 5.3 mV/mW and 7.8 mV/mW in the air and vacuum for the inputs of inside and outside heaters, indicating that the thermal sensitivities in the vacuum, where there is rarely thermal loss caused by gas, are higher than those in the air. The ac-dc voltage and current transfer difference ranges of the converter with single bifilar heater were about ${\pm}1.80\;ppm$ and ${\pm}0.58\;ppm$, and those of the converter with dual bifilar heater were about ${\pm}0.63\;ppm$ and ${\pm}0.25\;ppm$, and about ${\pm}0.53\;ppm$ and ${\pm}0.27\;ppm$, respectively, for the inputs of inside and outside heaters, in the frequency range below 10 kHz and in the air.

  • PDF

A Respiration Rate Measurement of Fresh Fruits and Vegetables with a Corrected Pressure Variation Method (수정된 압력변위법을 이용한 과채류 호흡속도 측정)

  • Lee, Hyun-Dong;Chung, Hun-Sik;Kang, Jun-Soo;Chung, Shin-Kyo;Choi, Jong-Uck
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1119-1124
    • /
    • 1997
  • This study was carried out for improvement and correction of the traditional pressure variation method (PVM) in the respiration rate measurements of fresh fruits and vegetables using a microcomputer system and a differential pressure sensor. Water vapor pressure in the container was calculated by equations for psychrometric calculations. At the beginning of experimental period water vapor pressure in the container was increased and maintained constantly in the most experimental period, but was decreased dramatically after $CO_2$ scrubbing. The percentages of water vapor pressure on total differential pressure were $33{\sim}46%$ at $1^{\circ}C$, $23{\sim}45%$ at $11^{circ}C$ and $35{\sim}53%$ at $21^{\circ}C$. The differences between the respiration rates determined by gas chromatography and corrected pressure variation method (CPVM) were $0.2{\sim}0.3\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $0.2{\sim}2.9\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and 1.0{\sim}9.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, while those between gas chromatography and normal pressure variation method (PVM) were $0.8{\sim}1.2\;mgCO_2kg^{-1}h^{-1}$ at $1^{\circ}C$, $3.9{\sim}11.0\;mgCO_2kg^{-1}h^{-1}$ at $11^{\circ}C$ and $8.0{\sim}32.0\;mgCO_2kg^{-1}h^{-1}$ at $21^{circ}C$, respectively. The differences of the respiration rates with CPVM were smaller than those with PVM. CPVM, therefore, were more exact and convenient method than PVM in the measurement of respiration rate of fresh produce.

  • PDF

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Growth and Opto-electric Characterization of ZnSe Thin Film by Chemical Bath Deposition (CBD(Chemical Bath Deposition)방법에 의한 ZnSe 박막성장과 광전기적 특성)

  • Hong, K.J.;You, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.62-70
    • /
    • 2001
  • The ZnSe sample grown by chemical bath deposition (CBD) method were annealed in Ar gas at $45^{\circ}C$. Using extrapolation method of X-ray diffraction pattern, it was found to have zinc blend structure whose lattice parameter $a_o$ was $5.6687\;{\AA}$. From Hall effect, the mobility was likely to be decreased by impurity scattering at temperature range from 10 K to 150 K and by lattice scattering at temperature range from 150 K to 293 K. The band gap given by the transmission edge changed from $2.700{\underline{5}}\;eV$ at 293 K to $2.873{\underline{9}}\;eV$ at 10 K. Comparing photocurrent peak position with transmission edge, we could find that photocurrent peaks due to excition electrons from valence band, ${\Gamma}_8$ and ${\Gamma}_7$ and to conduction band ${\Gamma}_6$ were observed at photocurrent spectrum. From the photocurrent spectra by illumination of polarized light on the ZnSe thin film, we have found that values of spin orbit coupling splitting ${\Delta}so$ is $0.098{\underline{1}}\;eV$. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be $0.061{\underline{2}}\;eV$ and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be $0.017{\underline{2}}\;eV$, $0.031{\underline{0}}\;eV$, respectively.

  • PDF