• Title/Summary/Keyword: $Hg_2^{2+}$ ions

Search Result 214, Processing Time 0.039 seconds

New Dioscin-Glycosidase Hydrolyzing Multi-Glycosides of Dioscin from Absidia Strain

  • Fu, Yao Yao;Yu, Hong Shan;Tang, Si Hui;Hu, Xiang Chun;Wang, Yuan Hao;Liu, Bing;Yu, Chen Xu;Jin, Feng Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.1011-1017
    • /
    • 2010
  • A novel dioscin-glycosidase that specifically hydrolyzes multi-glycosides, such as 3-O-${\alpha}$-L-($1{\to}4$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, and ${\beta}$-D-glucoside, on diosgenin was isolated from the Absidia sp.d38 strain, purified, and characterized. The molecular mass of the new dioscin-glycosidase is about 55 kDa based on SDS-PAGE. The dioscin-glycosidase gradually hydrolyzes either 3-O-${\alpha}$-L-($1{\to}4$)-Rha or 3-O-${\alpha}$-L-($1{\to}2$)-Rha from dioscin into 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin, further rapidly hydrolyzes the other ${\alpha}$-L-Rha from 3-O-${\alpha}$-L-Rha-${\beta}$-D-Glc-diosgenin into the main intermediate products of 3-O-${\beta}$-D-Glc-diosgenin, and subsequently hydrolyzes these intermediate products into aglycone as the final product. The enzyme also gradually hydrolyzes 3-O-${\alpha}$-L-($1{\to}4$)-arabinoside, 3-O-${\alpha}$-L-($1{\to}2$)-rhamnoside, and ${\beta}$-D-glucoside from [3-O-${\alpha}$-L-($1{\to}4$)-Ara, 3-O-${\alpha}$-L-($1{\to}4$)-Rha]-${\beta}$-D-Glc-diosgenin into diosgenin as the final product, exhibiting significant differences from previously reported glycosidases. The optimal temperature and pH for the new dioscin-glycosidase is $40^{\circ}C$ and 5.0, respectively. Whereas the activity of the new dioscin-glycosidase was not affected by $Na^+$, $K^+$, and $Mg^{2+}$ ions, it was significantly inhibited by $Cu^{2+}$ and $Hg^{2+}$ ions, and slightly affected by $Ca^{2+}$ ions.

Studies on the alkaline protease produced from Monascus sp. (Monascus 속(屬) 균주(菌株)가 생성(生成)하는 Alkaline Protease에 관(關)한 연구(硏究))

  • Kim, Sang-Dal;Seu, Jung-Hwn
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 1972
  • The alkaline protease was isolated from the culture material of monascus sp. on wheat bran culture. The crude purification of this enzyme was extracted with distilled water and precipitated with ammonium sulfate of 0.5 saturation. And, the activity of this enzyme was determind very strongly by folin's colorimetric method. The optimal pH of this enzyme was ranging from pH 10 to 13 and the optimal temperature was $50^{\circ}C$. The pH stability was ranging from pH 5 to 12 and the enzyme activity was not inactivated by heat treatment in lower temperature than $40^{\circ}C$. The enzyme was protected from heat denature by the treatment of $Pb^#$, $Ba^#$, $Co^#$, $Zn^#$, and $Cu^#$, but was inactivated with $Hg^#$, $Fe^#$ strongly. Moreover, one of these metal ions, the cupper ion, has a strong protective activity on enzyme heat denature. And, it was not effected by treatment of EDTA.

  • PDF

Purification and Characterization of an Endo-$\beta$-1,3-1,4-Glucanase from Escherichia coli(pLL200K) (재조합 균주 Escherichia coli (pLL200K)가 생산하는 Bacillus circulans endo-$\beta$-1,3-1,4-glucanase의 정제 및 특성)

  • 김지연
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.241-246
    • /
    • 2002
  • A gene coding for endo-$\beta$-1,3-1,4-glucanase of Bacillus circulans was subcloned into Escherichia coli Ml5 using pQE30 as an expression vector. Endo-$\beta$-1,3-1,4-glucanase produced by the recombinant expression plas-mid pLQ43 was intactly purified to a single protein through a nickel-nitrilotriacetic acid (Ni-NTA) metal-affinity chromatography method. The molecular mass of the purified enzyme was estimated to be 28 kDa by SDS-PAGE. The optimum pH and temperature of the enzyme activity were pH 6.8 and $60^{\circ}C$, respectively. This enzyme was fairly stable in the pH ranging 5.5~7.5 and at the temperatures lower than $55^{\circ}C$. The enzyme appeared to be sensitive to most of the metal ions, especially to $Hg^{2+$, and also to methanol, ethanol, isopropanol or 1-butanol at a concentration of 10%(v/v).

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

Characterization and N-Terminal Amino Acid Sequence Analysis of Catechol 2,3-dioxygenase Isolated from the Aniline Degrading Bacterium, Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 catechol 2,3-dioxygenase의 특성 및 N-말단 아미노산 서열분석)

  • 황선영;송승열;오계헌
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aim of this work was to investigate the characterization and sequence of catechol 2,3-dioxygenase isolated from Delfia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. In initial experiments, several characteristics of C2,3O separated with ammonium sulfate precipitation, DEAE-sepharose were investigated. Specific activity of C2,3O was approximately 4.72 unit/mg. C2,3O demonstrated its enzyme activity to other substrates, catechol and 4-methylcatechol. The optimum temperature of C2,3O was $$Cu^{2+}$^{\circ}C$, and the optimal pH was approximately 8. Metal ions such as $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of C2,3O. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O was analyzed as $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$, and exhibited high sequence homology with that of C2,30 from Pseudomonas sp. AW-2, Comamonas sp. JS765, Comamonas testosteroni and Burkholderia sp. RPO07. PCR product was amplified with the primers derived from N-terminal amino acid sequence. In this work, we found that the amino acid sequence of Delftia sp. JK-2 showed high sequence homology of C2,3O from Pseudomonas sp. AW-2 (100%) and Comamonas sp. JS765 (97%).

Purification and Characterization of an Extracellular Levansucrase from Zymomonas mobilis ZM1(ATCC 10988). (Zymomonas mobilis ZM1이 생산하는 균체외 Levansucrase의 정제 및 특성)

  • 송기방;서정우;주현규;이상기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.309-315
    • /
    • 1998
  • An extracellular levansucrase, which catalyzes the formation of levan from sucrose, from the culture broth of Zymomonas mobilis ZM1 was purified by conventional column purification methods. The final purification yield was 18.3 fold of the crude enzyme from Z. mobilis, with 16.5 % of the enzyme recovered in the preparation step. The molecular weight of the enzyme was estimated to be 91,000 by Superose 12 gel filtration, and 45,000 by SDS-PAGE, indicating that levansucrase is a dimer. The optimum pH for the enzyme activity was around pH 4.0 for sucrose hydrolysis, and was around pH 5.0 for levan formation. The enzyme was inhibited by some metal ions, such as Hg$\^$2+/ and Cu2$\^$2+/, and 50% of inhibition was observed with 5mM EDTA. The enzyme activity was enhanced by the presence of detergent Triton X-100, but inhibited by SDS completely The enzyme catalyzes the liberation of reducing sugars, oligosacccharides and the formation of fructose polymer(levan). The enzyme also catalyzes the transfructosylation reaction of fructose moiety from sucrose to various sugar acceptor molecules, including sugar alcohols.

  • PDF

Purification and Characterization of Endo-$\beta$-1,4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry

  • Naganagouda, K.;Salimath, P.V.;Mulimani, V.H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1184-1190
    • /
    • 2009
  • A thermostable extracellular $\beta$-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The $\beta$-mannanase exhibited optimum catalytic activity at pH 5.5 and $55^{\circ}C$. It was thermostable at $55^{\circ}C$, and retained 50% activity after 6 h at $55^{\circ}C$. The enzyme was stable at a pH range of 3.0 to 7.0. The metal ions $Hg^{2+}$, $Cu^{2+}$, and $Ag^{2+}$ inhibited complete enzyme activity. The inhibitors tested, EDTA, PMSF, and 1,10-phenanthroline, did not inhibit the enzyme activity. N-Bromosuccinimide completely inhibited enzyme activity. The relative substrate specificity of enzyme towards the various mannans is in the order of locust bean gum>guar gum>copra mannan, with $K_m$ of 0.11, 0.28, and 0.33 mg/ml, respectively. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food-processing industry.

Characterization of ${\beta}-Galactosidase$ from a Bacillus sp. with High Catalytic Efficiency for Transgalactosylation

  • In, Man-Jin;Jin, Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1998
  • A ${\beta}$-galactosidase with high transgalactosylic activity was purified from a Bacillus species, registered as KFCC10855. The enzyme preparation showed a single protein band corresponding to a molecular mass of 150 kDa on SDS-PAGE and gave a single peak with the estimated molecular mass of 250 kDa on Sephacryl S-300 gel filtration, suggesting that the enzyme is a homodimeric protein. The amino acid and sugar analyses revealed that the enzyme is a glycoprotein, containing 19.2 weight percent of sugar moieties, and is much more abundant in hydrophilic amino acid residues than in hydrophobic residues, the mole ratio being about 2:1. The pI and optimum pH were determined to be 5.0 and 6.0, respectively. Having a temperature optimum at $70^{\circ}C$ for the hydrolysis of lactose, the enzyme showed good thermal stability. The activity of the enzyme preparation was markedly increased by the presence of exogenous Mg (II) and was decreased by the addition of EDTA. Among the metal ions examined, the most severely inhibitory effect was seen with Ag (I) and Hg (II). Further, results of protein modification by various chemical reagents implied that 1 cysteine, 1 histidine, and 2 methionine residues occur in certain critical sites of the enzyme, most likely including the active site. Enzyme kinetic parameters, measured for both hydrolysis and transgalactosylation of lactose, indicated that the enzyme has an excellent catalytic efficiency for formation of the transgalactosylic products in reaction mixtures containing high concentrations of the substrate.

  • PDF

Purification and Properties of Intracellular Invertase from Alkalophilic and Thermophilic Bacillus cereus TA-11

  • Yoon, Min-Ho;Choi, Woo-Young;Kwon, Su-Jin;Yi, Sung-Hun;Lee, Dae-Hyung;Lee, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.196-201
    • /
    • 2007
  • An intracellular invertase was purified to homogeneity from the cell extract of an alkalophilic and thermophilic Bacillus sp. TA-11, which was classified as a new species belonging to Bacillus cereus based on chemotaxanomic and phylogenetic analyses. The purified enzyme with a recovery of 26.6% was determined to be a monomeric protein with a molecular weight of 23 kDa by SDS-PAGE and 26 kDa by gel filtration. The maximum enzyme activity was observed at pH 7.0 and $50^{\circ}C$, and the purified enzyme was stable at the pH range of 5.0 to 8.0 and below $60^{\circ}C$. $K_m$ and $V_{max}$ values of the enzyme for sucrose were 370 mM and 3.0 ${\mu}M$ per min, respectively. The enzyme activity was significantly inhibited by bivalent metal ions ($Hg^{2+}$, $Cd^{2+}$ and $Cu^{2+}$) and sugars (glucose and fructose).

Partial Purification and some Properties of Cellulase Components from Trichoderma koningii (Trichoderma koningii로 부터 추출한 섬유소분해효소의 부분정제 및 그의 효소학적 성질)

  • 홍순우;민경희;이영하
    • Korean Journal of Microbiology
    • /
    • v.14 no.2
    • /
    • pp.84-94
    • /
    • 1976
  • Cellulase components, CMCase(Cx) and Avicelase$(C_1)$, were partially prueified, from the culture extract of a strain of Trichoderma koningii by column chromatography on DEAE-Sephadex A-50 and the step of gel filtration through Sphadex G-150, Optimum pH of CMCase was 5.2 and Avicelase showed the highest activity at pH 5.6 in acetate buffer. Optimal temperatures for activities of CMCase and Avicelase were $50^{\circ}C\;and\;60^{\circ}C, $ respectively. More than 70% of the activities of two enzymes were remained after heating at $60^{\circ}C$ for 30 min and Avicelase is more stable than any other fungal enzymes. The Michaelis constants, Km, of CMCase and Avicelase were 0.116% of CMC and 0.281% of avicel. And also the values of maximum velocity, Vmax, of CMCase and Avicelase were $23.20{\mu}g\;and\;2.54{\mu}g$ of reducing sugar per min. Of the metal ions tested against the activites of CMCase and Avicelase, $Cu^{++}, \; Hg^{++}, \;and\;Pb^{{++}$ are remarkably effective inhibitors. The molecular weights of Cx and $C_1$ component were estimated to be about 47, 000 and 61, 000 by gel filtration method.

  • PDF