Characterization and N-Terminal Amino Acid Sequence Analysis of Catechol 2,3-dioxygenase Isolated from the Aniline Degrading Bacterium, Delftia sp. JK-2

Aniline 분해세균 Delftia sp. JK-2에서 분리된 catechol 2,3-dioxygenase의 특성 및 N-말단 아미노산 서열분석

  • 황선영 (순천향대학교 자연과학대학 생명공학부) ;
  • 송승열 (순천향대학교 자연과학대학 생명공학부) ;
  • 오계헌 (순천향대학교 자연과학대학 생명공학부)
  • Published : 2003.03.01

Abstract

The aim of this work was to investigate the characterization and sequence of catechol 2,3-dioxygenase isolated from Delfia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. In initial experiments, several characteristics of C2,3O separated with ammonium sulfate precipitation, DEAE-sepharose were investigated. Specific activity of C2,3O was approximately 4.72 unit/mg. C2,3O demonstrated its enzyme activity to other substrates, catechol and 4-methylcatechol. The optimum temperature of C2,3O was $$Cu^{2+}$^{\circ}C$, and the optimal pH was approximately 8. Metal ions such as $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of C2,3O. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O was analyzed as $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$, and exhibited high sequence homology with that of C2,30 from Pseudomonas sp. AW-2, Comamonas sp. JS765, Comamonas testosteroni and Burkholderia sp. RPO07. PCR product was amplified with the primers derived from N-terminal amino acid sequence. In this work, we found that the amino acid sequence of Delftia sp. JK-2 showed high sequence homology of C2,3O from Pseudomonas sp. AW-2 (100%) and Comamonas sp. JS765 (97%).

단일 탄소원과 질소원 및 에너지원으로 aniline을 이용하는 Delftia sp. JK-2에서 분리 정제한 catechol 2,3-dioxygenase (C2,3O)의 특성과 N-말단 아미노산 및 DNA 서열을 분석하였다. C2,3O의 특성을 조사하기 위하여 aniline에서 배양한 Delftia sp. JK-2를 초음파 분쇄기로 파쇄하였으며, ammonium sulfate precipitation과 DEAE-sepharose로 정제하였다. 정제된 C2,3O의 고유활성(specific activity)은 약4.72 unit/mg이었으며, C2,3O는 catechol과4-methylcatechol 대해서 효소활성을 나타내었다. C2,3O는$30^{\circ}C$와pH 8.0에서 최적 활성을 나타내는 것으로 조사되었으며, $Ag^{+}$, $Hg^{+}$,그리고 $Cu^{2+}$는 Deftia sp. JK-2의 C2,3O 활성을 억제하였다. SDS-PAGE에 의해 측정 된C2,3O의 분자량은 약 35 KDa이었으며, N-말단 아미노산 서열을 분석한 결과, $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$로 확인되었다. 이 N-말단 아미노산 서열은 Pseudomonas sp. AW-2와 Coma-monas sp. Js765의 C2,30와 일치하는 것으로 나타났으며, 얻어진 결과를 토대로 primer를 제작하여 polymerase chain reaction (PCR)을 실시하였다. PCR을 통해 얻어진 Delftia sp. JK-2의 C2,30유전자 DNA서열을 분석하여 상동성 조사를 하였다. DNA서열의 상동성 조사는 유추되는 아미노산 서 열로 바꾸어서 실시하였으며,그 결과 Deftia JK-2의 C2,3O는Pseudomonas sp. AW-2의 C2,3O(100%)와 Coma-monas sp. JS76S의 C2,3O(97%)에서 높은 상동성 이 확인되었다.

Keywords

References

  1. Agric. Biol. Chem. v.47 Metabolism of aniline by Rhodococcus erythropolis AN-3. Aoki, K.;R. Shinke;H. Nishira. https://doi.org/10.1271/bbb1961.47.1611
  2. Agric. Biol. Chem. v.54 Microbial metabolism of aniline through a meta-cleavafe pathway: Isolation of strains and production of catechol 2,3-dioxygenase. Aoki, K.;Y. Nakanishi;S. Murakami;R. Shinke. https://doi.org/10.1271/bbb1961.54.205
  3. Gel elesctrophoresis under denaturing condition. (2nd ed.) Bollag, D.M;M.D. Rozycki;S.J. Edelstein
  4. Anal. Biochem v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Bradford M.M https://doi.org/10.1016/0003-2697(76)90527-3
  5. Catechol dioxygenases v.34 Broderick, J.B
  6. Eur. J. Biochem. v.229 Substrate specificity differences between two catechol 2, 3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida Cerdan P;M. Rekik;S. Harayama https://doi.org/10.1111/j.1432-1033.1995.tb20445.x
  7. Kor. J. Microbiol. v.36 Characterization of aniline-degrading bacterium, Delftia sp. JK-2 isolated from activated sludge of municipal sewage treatment plant. Cho, Y.S.;H.Y. Kahng;H.W. Chang;K.H. Oh
  8. J. Bacteriol. v.170 Nucleotide sequence and regulational analysis gens involved in conversion of aniline to catechol in Pseudomonas putida UCC22 (pTDN1) Fukumori, F.;C.P. Saint
  9. FEMS Microbiol. Rev. v.103 Microbial breakdown of halo-genated aromatic pesticides and related compound Haggblom, M.M https://doi.org/10.1111/j.1574-6968.1992.tb05823.x
  10. Ecotoxicol. Environ. Safety. v.20 Influence of cytochrome P450 mixed function oxidase induction on the acute toxicity to rainbow trout of aromatic amines Hermans, J.L.;S.P. Bradury;S.J. Broderius https://doi.org/10.1016/0147-6513(90)90054-9
  11. J. Bacteriol. v.180 Degradation of chloroaro-matics: Purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31 Kaschabek, S.R.;T. Kasberg;D. Miller;A.E. Mars;D.B. Janssen;W. Reineke
  12. Kor. J. Microbiol. v.31 Purification and characterization of catechol 1,2-dioxygenase from aniline degrading Achromobacter gr. D.V.K-24 Kim, S.I.;S.H. Kim;Y.N. Lee.
  13. J. Biochem. v.117 Overexpression of Pseudomonas putida catechol 2,3-dioxygenase with high specific activity by genetically engineered Escherichia coli. Kobayashi, T.;T. Ishida;K. Horiike;Y. Takahara;N. Numao;A. Nakazawa;T. Nakazawa;M. Nozaki https://doi.org/10.1093/oxfordjournals.jbchem.a124753
  14. Appl. Environ. Microbiol. v.55 Charac-terization of a Pseudomonas sp. capable of aniline degradation in the presence of secondary carbon sources. Konopka, A.;D. Knight;R.F. Turco
  15. Appl. Microbiol. Biote-chnol. v.58 Degradation of aniline by newly isolated, extremely aniline-tolerant Delftia sp. AN3. Liu, Z.;H. Yang;Z. Huang;P.Zhou;S.J. Liu
  16. Appl. Environ. Microbiol. v.48 Mechanisms and pathways of aniline elimination from aquatic environ-ments. Lyons, C.D.;S. Katz;R. Bartha
  17. Extremophiles v.3 Catechol 2,3-dioaygenase from the thermophilic, phenol-degrading Bacillus thermoleovorans strain A2 has unexpected low thermal stability Milo, R.E.;F.M. Duffner;R. Muller https://doi.org/10.1007/s007920050115
  18. Arch. Biochem. Biophys. v.332 Characterization of the gene encoding catechol 2,3-dioxygenase of Alcaligenes sp. KF711: overexpression, enzyme purification, and nucleotide sequencing Moon, J.;K.R. Min;C.K. Kim;K.H. Min;Y. Kim https://doi.org/10.1006/abbi.1996.0339
  19. Biosci. Biotechnol. Biochem. v.62 Purification, characteriza-tion, and gene analysis of catechol 2,3-dioxygenase from the aniline-assimilating bacterium Pseudomonas species AW-2. Murakami, S.;Y. Nakanishi;N. Kodama;S. Takenaka;R. Shinke;K. Aoki https://doi.org/10.1271/bbb.62.747
  20. Biochem. Biophys. Res. Commun. v.234 Structure of catechol 2,3-dioxygenase gene encoded in TOM plasmid of Pseudomomas cepacia G4. Oh, J.M.;E. Kang;K.R. Min;C.K. Kim;Y.C. Kim;J.Y. Lim;K.S. Lee;K.H. Min;Y. Kim https://doi.org/10.1006/bbrc.1997.6680
  21. J. Ind. Microbiol. Biotechnol. v.19 Cloning and sequence analysis of a catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp. JS765. Parales, R.E.;T.A. Ontl;D.T. Gibson https://doi.org/10.1038/sj.jim.2900420
  22. J. Gen. Microbiol. v.137 Degradation of 2-methylaniline in Rhodococcus rhodochrous: cloning and expression of two clustered catechol 2,3-dioxygenase genes from strain CTM. Schreiner, A.;K. Fuchs;F. Lottspeich;H. Poth;F. Lingens https://doi.org/10.1099/00221287-137-8-2041
  23. Agric. Biol. Chem. v.55 Induction, purification, and characterization of catechol 2,3-dioxygenase from aniline-assimilating Pseudomonas sp. FK-8-2. Yoko, N.;S. Murakami;R. Shinke;K. Aoki https://doi.org/10.1271/bbb1961.55.1281
  24. J. Agric. Food Chem. v.30 Metabolism of dichloro-aniline by Pseudomonas putida You, I.S.;R. Barth https://doi.org/10.1021/jf00110a014
  25. Appl. Environ. Micro-biol. v.50 Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Zeyer, J.;A. Wasserfallen;K.N. Timmis