• Title/Summary/Keyword: $H_2O_2$ Oxidation

검색결과 1,283건 처리시간 0.03초

P/M Fecralloy의 성형성 및 전기저항특성 향상에 관한 연구 (A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy)

  • 박진우;고병현;정우영;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제23권6호
    • /
    • pp.426-431
    • /
    • 2016
  • The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an $Al_2O_3$ film on the metal surface in an oxidizing atmosphere at high temperatures up to $1400^{\circ}C$. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at $950^{\circ}C$ for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Dudleya brittonii extract promotes survival rate and M2-like metabolic change in porcine 3D4/31 alveolar macrophages

  • Kim, Hyungkuen;Jeon, Eek Hyung;Park, Byung-Chul;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권11호
    • /
    • pp.1789-1800
    • /
    • 2019
  • Objective: Although alveolar macrophages play a key role in the respiratory immunity of livestock, studies on the mechanism of differentiation and survival of alveolar macrophages are lacking. Therefore, we undertook to investigate changes in the lipid metabolism and survival rate, using 3D4/31 macrophages and Dudleya brittonii which has been used as a traditional asthma treatment. Methods: 3D4/31 macrophages were used as the in vitro porcine alveolar macrophages model. The cells were activated by exposure to phorbol 12-myristate 13-acetate (PMA). Dudleya brittonii extraction was performed with distilled water. For evaluating the cell survival rate, we performed the water-soluble tetrazolium salt cell viability assay and growth curve analysis. To confirm cell death, cell cycle and intracellular reactive oxygen species (ROS) levels were measured using flow cytometric analysis by applying fluorescence dye dichlorofluorescein diacetate and propidium iodide. Furthermore, we also evaluated cellular lipid accumulation with oil red O staining, and fatty acid synthesis related genes expression levels using quantitative polymerase chain reaction (qPCR) with SYBR green dye. Glycolysis, fatty acid oxidation, and tricarboxylic acid (TCA) cycle related gene expression levels were measured using qPCR after exposure to Dudleya brittonii extract (DB) for 12 h. Results: The ROS production and cell death were induced by PMA treatment, and exposure to DB reduced the PMA induced downregulation of cell survival. The PMA and DB treatments upregulated the lipid accumulation, with corresponding increase in the acetyl-CoA carboxylase alpha, fatty acid synthase mRNA expressions. DB-PMA co-treatment reduced the glycolysis genes expression, but increased the expressions of fatty acid oxidation and TCA cycle genes. Conclusion: This study provides new insights and directions for further research relating to the immunity of porcine respiratory system, by employing a model based on alveolar macrophages and natural materials.

오존산화에 의한 수처리공정에서 VOCs의 제거 특성 (VOCs Removal in Drinking Water Treatment Process by Ozonation)

  • 한명호;최준호;임학상
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.65-75
    • /
    • 1997
  • Removal characteristics of volatile organic carbons(VOCs) by ozone oxidation and other processes in the raw water of the 1st Nakdong water treatment plant were investigated. Dichrolomethane, toluene and other 7 compounds were detected in the raw water. With regard to detected 4 compounds in finally treated water, it was found that VOCs could not be removed effectively by traditional water treatment process. Benzene, 1,2-dichlorobenzne were not detected in the raw water but they were detected in the process of treatment. The compound of highest detection frequency was dichloromethane. When the raw water was controlled at pH 7, temperature $20^{\circ}C$, 5 minutes as contact time, 10 minutes as reaction time, the removal rate of THMFP, $KMnO_4$ demand, TOC, $UV_{254nm}$ and $NH_3-N$ were 46.4%, 22%, 19.6%, 31% and 8%, respectively. From estimating the finally treated water qualities in 7 kinds of treatment processes, P-6 process(raw water-chlorination-coagulation-ozonation) was most effective for organics removal and THMs control. Removal efficiencies for $KMnO_4$ demand and TOC by the process which combined preozonation with coagulation was twice better than only preozonation. $NH_3-N$ removal rate was shown as 10% by P-3 process(raw water-coagulation-ozonation), but 83% of $NH_3-N$ was removed by P-4 process(raw water-coagulation-chlorination). It was found that the chlorination is more effective than the ozonation for the NH3-N removal as commonly known.

  • PDF

외부 화학증착 공정에서의 가수분해반응으로 인한 실리카 생성에 대한 버크-슈만 해석 (Burke-Schumann analysis of silica formation by hydrolysis in an external chemical vapor deposition process)

  • 송창걸;황정호
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1671-1678
    • /
    • 1996
  • In external chemical vapor deposition processes including VAD and OVD the distribution of flame-synthesized silica particles is determined by heat and mass transfer limitations to particle formation. Combustion gas flow velocities are such that the particle diffusion time scale is longer than that of gas flow convection in the zone of particle formation. The consequence of these effects is that the particles formed tend to remain along straight smooth flow stream lines. Silica particles are formed due to oxidation and hydrolysis. In the hydrolysis, the particles are formed in diffuse bands and particle formation thus requires the diffusion of SiCl$\_$4/ toward CH$\_$4//O$\_$2/ combustion zone to react with H$\_$2/O diffusing away from these same zones on the torch face. The conversion kinetics of hydrolysis is fast compared to diffusion and the rate of conversion is thus diffusion-limited. In the language of combustion, the hydrolysis occurs as a Burke-Schumann process. In selected conditions, reaction zone shape and temperature distributions predicted by the Burke-Schumann analysis are introduced and compared with experimental data available. The calculated centerline temperatures inside the reaction zone agree well with the data, but the calculated values outside the reaction zone are a little higher than the data since the analysis does not consider diffusion in the axial direction and mixing of the combustion products with ambient air. The temperatures along the radial direction agree with the data near the centerline, but gradually diverge from the data as the distance is away from the centerline. This is caused by the convection in the radial direction, which is not considered in the analysis. Spatial distribution of silica particles are affected by convection and diffusion, resulting in a Gaussian form in the radial direction.

염화주석/camphene 슬러리의 동결건조에 의한 방향성 기공구조의 Sn 다공체 제조 (Synthesis of Aligned Porous Sn by Freeze-Drying of Tin Chloride/camphene Slurry)

  • 방수룡;오승탁
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.27-31
    • /
    • 2015
  • This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide ($SnO_2$) coated Sn powders. The $SnO_2$ coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at $-25^{\circ}C$. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at $670^{\circ}C$ in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at $1100^{\circ}C$ for 1 h in a hydrogen atmosphere, showed large pores of about $200{\mu}m$, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, $100{\mu}m$ spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.

Solution Processable Symmetric 4-Alkylethynylbenzene End-Capped Anthracene Derivatives

  • Jang, Sang-Hun;Kim, Hyun-Jin;Hwang, Min-Ji;Jeong, Eun-Bin;Yun, Hui-Jun;Lee, Dong-Hoon;Kim, Yun-Hi;Park, Chan-Eon;Yoon, Yong-Jin;Kwon, Soon-Ki;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.541-548
    • /
    • 2012
  • New candidates composed of anthracene and 4-alkylethynylbenzene end-capped oligomers for OTFTs were synthesized under Sonogashira coupling reaction conditions. All oligomers were characterized by FT-IR, mass, UV-visible, and PL emission spectrum analyses, cyclic voltammetry (CV), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), $^1H$-NMR, and $^{13}C$-NMR. Investigation of their physical properties showed that the oligomers had high oxidation potential and thermal stability. Thin films of DHPEAnt and DDPEAnt were characterized by spin coating them onto Si/$SiO_2$ to fabricate top-contact OTFTs. The devices prepared using DHPEAnt and DDPEAnt showed hole field-effect mobilities of $4.0{\times}10^{-3}cm^2$/Vs and $2.0{\times}10^{-3}cm^2$/Vs, respectively, for solution-processed OTFTs.

A Bioactive Fraction from Streptomyces sp. Enhances Maize Tolerance against Drought Stress

  • Warrad, Mona;Hassan, Yasser M.;Mohamed, Mahmoud S.M.;Hagagy, Nashwa;Al-Maghrabi, Omar A.;Selim, Samy;Saleh, Ahmed M.;AbdElgawad, Hamada
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1156-1168
    • /
    • 2020
  • Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.

과산화수소/초음파를 이용한 알지네이트의 저분자화 (Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation)

  • 최수경;최유성
    • 폴리머
    • /
    • 제35권5호
    • /
    • pp.444-450
    • /
    • 2011
  • 천연 알지네이트를 저분자화시키기 위해 과산화수소/초음파를 사용하였다. 이때 반응 온도 시간, 과산화수소 농도 그리고 초음파 조사 조건 등이 저분자화 생성물에 미치는 영향을 검토하였다. 생성된 저분자 알지네이트의 화학적 구조를 규명한 결과 주로 1,4-glycosidic bond가 끓어져서 저분자화가 진행되고 특정조건에서 생성물에 formate 그룹이 형성됨을 확인할 수 있었다. 생성물의 분자량은 MALS가 부착된 GPC를 사용하여 측정하였다. 2 wt%의 고분자 알지네이트 용액을 50 $^{\circ}C$의 초음파 분위기에서 0.5시간 동안 반응시켰을 때 분자량이 450 kDa에서 15.9 kDa로 저하되었다. 또한 분자량분포도는 상당히 좁고 반응 조건에 따라 큰 변화 없이 일정함(~2)을 확인할 수 있었다.

UV 조사한 신립초 및 케일 녹즙의 항산화 활성 및 아질산염 소거작용의 변화 (Changes in Antioxidant and Nitrite Scavenging Activities of Angelica keiskei and Brassica loeracea var. acephala Vegetable Juices Treated with UV Irradiation during Storage)

  • 최구희;권상철;이경행
    • 한국식품영양과학회지
    • /
    • 제39권8호
    • /
    • pp.1187-1193
    • /
    • 2010
  • 녹즙은 가열살균공정을 거치지 않기 때문에 유통기한이 매우 짧아 비가열 살균기술 중의 하나인 UV 살균처리 방법을 이용하여 신립초 및 케일 녹즙을 제조한 후 저장기간에 따른 항산화 활성의 변화 및 아질산염 소거능의 변화를 측정하였다. 저온살균방법 중 UV 처리 기술을 이용하여 신립초 및 케일 녹즙을 제조한 후 UV 처리에 따른 저장기간 내 항산화 활성의 변화 및 아질산염 소거능 변화를 측정하였다. 신립초 및 케일 녹즙의 polyphenol 화합물의 함량은 UV 처리에 의하여 다소 감소하였으며 저장기간이 증가할수록 대조군 및 UV 처리군 모두 polyphenol 화합물의 함량이 감소하였다. DPPH 전자공여능의 변화는 UV 처리 직후 대조군에 비하여 UV 처리군이 다소 높은 활성을 보였고 저장기간 내내 유의적인 차이를 보이지는 않았다. 또한 UV 처리군 간에는 크게 유의적인 차이는 없는 것으로 나타났다. ABTS 활성을 보면 UV 처리 직후 녹즙의 활성은 대조군에 비하여 UV 처리군이 다소 낮게 나타났으며 케일의 경우 UV 처리군간에는 처리 유속이 느릴수록 낮게 나타났다. 금속이온 제거능에서는 신립초의 경우 UV 처리 직후 대조군이 가장 높았고 UV 처리군이 다소 낮은 활성을 보였으며 UV 처리 유속과는 크게 관계없는 것으로 나타났다. 케일의 경우, 대조군과 UV 처리군 모두 제조 직후 유의적인 차이는 없는 것으로 나타났으며 저장기간에 따른 변화는 신립초와 마찬가지로 증가하는 경향이었다. 지질과산화 억제능은 신립초와 케일 모두 blank에 비하여 낮은 O.D.값을 보여 지질과산화 억제능이 있었으며 대조군보다 UV 처리군이 다소 높은 O.D.값을 보여 UV 처리 시 지질과산화 억제능이 감소함을 나타냈다. 아질산염 소거능의 경우, 대조군과 UV 처리군 모두 큰 차이가 없었으며 pH 1.2에서 가장 높은 소거활성을 나타내었다.

오존처리에 의한 의약품류의 제거와 미생물의 불활성화에 대한 연구 및 고찰 (Study on the Removal of Pharmaceuticals and Personal Care Products and Microorganism Inactivation by Ozonation)

  • 김일호
    • 대한환경공학회지
    • /
    • 제32권12호
    • /
    • pp.1134-1140
    • /
    • 2010
  • 미량오염물질의 산화 및 대체 소독제로 각광받는 오존처리의 하수 2차 처리수중에 잔류하는 의약품류에 대한 제거 성능을 검토하였다. 또한, 의약품류의 제거를 목적으로 한 오존처리에 의한 미생물의 불활성화에 대하여 고찰하였다. 본 연구에서는 시험수로써 하수 2차 처리수를 이용하였으며, 오존처리는 2 mg/L, 4 mg/L, 6 mg/L의 오존 주입량으로 행하였다. 오존처리에 의해 시험수중에서 검출된 37종의 의약품류를 효과적으로 제거하기 위해서는 6 mg/L의 오존 주입량 (오존 소비량 : 4.4 mg/L)이 요구되었다. 동일한 오존처리 조건하에서는 대장균군 및 enteroviruses에 대해 약 3 log의 불활성화가 달성가능할 것으로 고찰되어, 잔류 의약품류의 제거 뿐만 아니라 병원성 미생물에 대해서도 효과적인 소독효과를 달성할 수 있을 것으로 판단되었다. 반면, 6 mg/L의 오존 주입량을 이용한 오존처리시, 처리수중의 용존오존농도가 약 1.8 mg/L까지 증가하여, 발암성 물질인 브로메이트의 생성가능성이 높아질 것으로 예상되었다. 이러한 브로메이트의 생성을 억제하기 위해서는 오존처리와 UV 또는 $H_2O_2$와의 조합공정인 고도산화처리공정에 대한 검토가 필요할 것으로 판단되었다.