DOI QR코드

DOI QR Code

A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy

P/M Fecralloy의 성형성 및 전기저항특성 향상에 관한 연구

  • Park, Jin-Woo (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Ko, Byung-Hyun (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Jung, Woo-Young (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Park, Dong-Kyu (LINC, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University)
  • 박진우 (경상대학교 나노 신소재 공학부) ;
  • 고병현 (경상대학교 나노 신소재 공학부) ;
  • 정우영 (경상대학교 나노 신소재 공학부) ;
  • 박동규 (경상대학교 링크 사업단) ;
  • 안인섭 (경상대학교 나노 신소재 공학부)
  • Received : 2016.10.07
  • Accepted : 2016.12.18
  • Published : 2016.12.28

Abstract

The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an $Al_2O_3$ film on the metal surface in an oxidizing atmosphere at high temperatures up to $1400^{\circ}C$. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at $950^{\circ}C$ for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Keywords

References

  1. H. W. Pickering: J. Electrochem. Soc., 119 (1972) 641. https://doi.org/10.1149/1.2404277
  2. N. Birks, G. H. Meier and F. S. Pettit: Introduction to the High Temperature Oxidation of Metals, (Ed.), Cambridge University Press, London (1983) 118.
  3. S. J. Han: M.S. Thesis, Influence of Y element on the heat resistance of the Fe-Cr-Al alloy, Inha Univerisity, Incheon (2015).
  4. P. Y. Hou and J. stringer: Oxid. Met., 38 (1992) 323. https://doi.org/10.1007/BF00665658
  5. B. Pieraggi and R. A. Rapp: J. Electrochem. Soc., 140 (1993) 2844. https://doi.org/10.1149/1.2220920
  6. B. Pieraggi, R. A. Rapp and J. P. Hirth: Oxid. Met., 44 (1995) 63. https://doi.org/10.1007/BF01046723
  7. B. A. Pint: Oxid. Met., 45 (1996) 1. https://doi.org/10.1007/BF01046818
  8. H. J. Grabke, M. Steinhorst, M. Brumm and D. Wiemer: Oxid. Met., 35 (1991) 199. https://doi.org/10.1007/BF00738286
  9. A. V. C. Sobral, C. V. Franco, M. P. Hierro, F. J. Perez, W. Ristow Jr.: Mater. Corros., 51 (2000) 791. https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  10. I. S. Lee: J. Korean Inst. Met. Mater., 47 (2009) 716.
  11. B. U. Koo, S. I. Lee, D. H. Park, J. Y. Yun and B. K. Kim: J. Korean Powder Metall. Inst., 22 (2015) 100. https://doi.org/10.4150/KPMI.2015.22.2.100
  12. F. H. Stott and F. I. Wei: Oxid. Met., 31 (1989) 369. https://doi.org/10.1007/BF00666463
  13. J. Stringer, B. A. Wilcox and R. I. Jaffee: Oxid. Met., 5 (1972) 11. https://doi.org/10.1007/BF00614617
  14. J. W. Park, B. H. Koo, W. Y. Jung, D. K. Park and I. S. Ahn: J. Korean Powder Metall. Inst., 23 (2016) 240. https://doi.org/10.4150/KPMI.2016.23.3.240
  15. F. H. Stott, G. C. Wood and F. A. Golightly: Corros. Sci., 19 (1979) 869.