• Title/Summary/Keyword: $H_2O$-Type

Search Result 1,739, Processing Time 0.03 seconds

EFFECT OF $Na_{2}O$ ADDITION ON MAGNETIC PROPERTIES OF $SrZn_{2}-W$ TYPE HEXAGONAL FERRITE

  • Yamamoto, Hiroshi;Fujii, Hiroshi;Mitsuoka, Takayuki
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.735-739
    • /
    • 1995
  • An experiment was carried out to investigate the effect of $Na_{2}O$ additive on the magnetic and physical properties of $SrZn_{2}-W$ type hexagonal ferrite. The specimens were prepared by the conventional manufacturing methods without atmosphere control. It was found that the magnetic properties of SrO.2ZnO.$8Fe_{2}O_{3}$ are considerably improved on adding 1.5wt% $Na_{2}O$. Theoptimum condition of making magnet with suitable properties are as follows : chemical analysis composition : $Sr^{2+}_{0.852}Zn^{2+}_{1.721}Na^{+}_{0.301}Fe^{2+}_{0.723}Fe^{3+}_{15.703}O_{27}$ ; semisintering condition : $1300^{\circ}C\;{\times}\;1h$ in air ; sintering condition : $1250^{\circ}C\;{\times}\;0.5h\;T_{c}=371^{\circ}C,\;H_{A}=1091.5kA/m,\;K_{A}=2.13{\times}10^{5}J/m^{3}\;and\;n_{B}=31.8\mu\textrm{B}$.

  • PDF

Simultaneous Observations of SiO and $H_2O$ Masers toward Symbiotic Stars

  • Cho, Se-Hyung;Kim, Jae-Heon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.79.2-79.2
    • /
    • 2010
  • We present the results of simultaneous observations of SiO v=1, 2, J=1-0, $^{29}SiO$ v=0, J=1-0, and $H_2O$ $6_{16}-5_{23}$ maser lines performed with the KVN Yonsei 21 m radio telescope from 2009 Nov. to 2010 Jan (ApJ, 719, 126, 2010). We searched for these masers in 47 symbiotic stars and detected maser emission from 21 stars, giving the first time detection from 19 stars. Both SiO and $H_2O$ masers were detected from seven stars of which six stars are D-type symbiotic and one is an S-type star, WRAY 15-1470. In the SiO maser emission, the $^{28}SiO$ v=1 maser was detected from 10 stars, while the v=2 maser detected from 15 stars. In particular, the $^{28}SiO$ v=2 maser emission without the v=1 maser detection was detected from nine stars with its detection rate of 60 %, which is much higher than that of isolated Miras/red giants. The $^{29}SiO$ v=0 maser emission was also detected from two stars, H 2-38 and BF Cyg, together with the $^{28}SiO$ v=2 maser. We conclude that these different observational results between isolated Miras/red giants and symbiotic stars may be related with the presence of hot companions in a symbiotic binary system.

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Simultaneous Observations of SiO and $H_2O$ Masers toward Known Stellar SiO and $H_2O$ Maser Sources.II. Statistical Study

  • Kim, Jae-Heon;Cho, Se-Hyung;Kim, Sang-Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.51.2-51.2
    • /
    • 2010
  • We have carried out an extensive statistical analysis based on the results of simultaneous observations of SiO and $H_2O$ masers toward 166 known SiO and $H_2O$ maser sources using KVN_Yonsei radio telescope (Kim et al.2010, ApJS submitted). We investigate the distributions of the mean velocities and the intensity ratios between SiO and $H_2O$ maser emission including those between SiO v=1 and v=2,J=1-0 transitions according to type of evolved stars. We also investigate mutual relations between SiO and $H_2O$ maser properties(total flux densities and velocity structures etc.) according to stellar pulsation phases. Most of SiO masers appear around the stellar velocity (80 % within ${\pm}5km\;s^{-1}$), while $H_2O$ masers show a different characteristic compared with SiO masers (69% within ${\pm}5km\;s^{-1}$). In addition, we investigate a correlation between $SiO/H_2O$ maser emission and AKARIFIS flux density as well as the AKARI color characteristics of SiO and $H_2O$ observational results in the AKARIFIS two-color diagram.

  • PDF

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Preparation of $N-TiO_2$ Photocatalysts and Activity Test ($N-TiO_2$ 광촉매의 제조와 광촉매 활성 검토)

  • Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.466-472
    • /
    • 2012
  • Visible-light-responding photocatalysts, $N-TiO_2$, were prepared by nitrogen doping onto $TiO_2$. The crystalline structure and morphology, doping state of the prepared photocatalysts were characterized by XRD, FE-SEM, and XPS. The activity of the prepared photocatalysts was examined by the decomposition of methyleneblue. The prepared catalysts were anatase type and the crystallinity was increased with pH. The particle sizes of the prepared catalysts were 5.42, 5.99, 7.58 nm at pH 2.2, 4.7, 9.0, respectively. The particle sizes of the prepared catalysts were slightly increased with pH. The activity of the photocatalysts was directly proportional to the crystallinity of the catalysts. $N-TiO_2$ prepared by nitrogen doping onto $TiO_2$ showed activity under visible light. The doped nitrogen was located not in the lattice but on the surface.

Thermal Characteristics of $H_2O$-NaOH Mixtures Type PCM for the Low Temperature Storage of Food and Medical Products (식.의약품 저온 저장을 위한 $H_2O$-NaOH 혼합형 잠열재의 냉축 열특성)

  • Song, Hyun-Kap;Ro, Jeong-Geun;Moon, Young-Mo
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • Mixtures type PCM, $H_2O$-NaOH that has relatively large capacity of the latent heat and long duration of phase change temperature was developed and experimentally analyzed for the low temperature storage of the food and medical products. The results could be summarized as follows; 1. Borax as nucleating agent and acrylic polymer as thickening agent were added to $H_2O$ to prevent the supercooling and phase separation. 2. Phase change (solid$\leftrightarrows$liquid) duration of $H_2O$ added with NaOH was prolonged longer 50% than that of pure $H_2O$. 3. Phase change temperature of the latent heat material, $H_2O$-NaOH was $1.5\sim2^{\circ}C$ the maximum latent Heat was 279 kJ/kg at the NaOH addition of 1.3 wt.%. 4. The specific heat of $H_2O$-NaOH at the solid and liquid state was increased in proportion to the wt.% of NaOH, when NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the specific heat of the solid state was increased from 3.19 kJ/kg to 5.84 kJ/kg and that of liquid state from 7.8 kJ/kg to 10.28 kJ/kg. 5. When NaOH of $1.15\sim1.60$ wt.% was added to $H_2O$, the total heat storage capacity composed of sensible and latent heat was $313\sim331.3$ kJ/kg and the maximum heat storage capacity was occurred at NaOH addition of 1.30 wt. %.

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Pleiotrohpic Effect of a Gene Fragment Conferring H$_{2}$O$_{2}$ resistance in Streptomyces coelicolor

  • Um, Tae-Han;Oh, chung-Hun;Lee, Jong-Soo;Park, Yong-Doo;Roe, Jung-Hye;Kim, Jae-Heon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.339-343
    • /
    • 1995
  • We isolated a 10 kb Bam HI fragment originated from the chromosome of a $H_2O$$^2$-resistant mutant strain of Streptomyces coelicolor, which confer $H_2O$$^2$-resistance to S. lividance upon transformation. Among various subclones ot 10kb Bam HI fragment tested for their $H_2O$$^2$-resistant phenotype in S. lividans, a subclone containing 5.2 kb Bam HI-BglII fragment was found to be responsible for $H_2O$$^2$-resistance. The plasmid containing this 5.2 kb fragment was then transformed into S. coellicolor A3(2) at early and tested for their phenotype of $H_2O$$^2$-resistance and the change in various enzymes whose activity can be stained in the gel. We found out that the 5.2 kb insert DNA conferred $H_2O$$^2$-resisstance in S. coelicolor A3(2) at early phase of cell growth. The presence of this DNA also resulted in higher level of peroxidase compared with the wild type cell containing parental vector (pIJ702) only. Esterase activity was also higher in this clone. However, alcohol dehydrogenase activity decreased compared with the wild type. These results suggest that the presence of a gene in 5.2 kb BamHI-BglII DNA fragment causes multiple changes in S. coelicolor related to its response against hydrogen peroxide. The result also implies that not only peroxidase but also esterase may function in the defencse meahsnism agianst $H_2O$$^2$-.

  • PDF

Kinetics of a Cloned Special Ginsenosidase Hydrolyzing 3-O-Glucoside of Multi-Protopanaxadiol-Type Ginsenosides, Named Ginsenosidase Type III

  • Jin, Xue-Feng;Yu, Hong-Shan;Wang, Dong-Ming;Liu, Ting-Qiang;Liu, Chun-Ying;An, Dong-Shan;Im, Wan-Taek;Kim, Song-Gun;Jin, Feng-Xie
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-${\beta}$-D-(1${\rightarrow}$2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-${\beta}$-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O-position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction $K_m$ value, there was a slower enzyme reaction speed; and the larger the enzyme reaction $V_{max}$ value, the faster the enzyme reaction speed was. The $K_m$ values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and $V_{max}$ value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the $V_{max}$ and $K_m$ values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.