DOI QR코드

DOI QR Code

Kinetics of a Cloned Special Ginsenosidase Hydrolyzing 3-O-Glucoside of Multi-Protopanaxadiol-Type Ginsenosides, Named Ginsenosidase Type III

  • Jin, Xue-Feng (College of Biotechnology, Dalian Polytechnic University) ;
  • Yu, Hong-Shan (College of Biotechnology, Dalian Polytechnic University) ;
  • Wang, Dong-Ming (College of Biotechnology, Dalian Polytechnic University) ;
  • Liu, Ting-Qiang (College of Biotechnology, Dalian Polytechnic University) ;
  • Liu, Chun-Ying (College of Biotechnology, Dalian Polytechnic University) ;
  • An, Dong-Shan (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Im, Wan-Taek (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Kim, Song-Gun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Feng-Xie (College of Biotechnology, Dalian Polytechnic University)
  • Received : 2011.07.29
  • Accepted : 2011.11.07
  • Published : 2012.03.28

Abstract

In this paper, the kinetics of a cloned special glucosidase, named ginsenosidase type III hydrolyzing 3-O-glucoside of multi-protopanaxadiol (PPD)-type ginsenosides, were investigated. The gene (bgpA) encoding this enzyme was cloned from a Terrabacter ginsenosidimutans strain and then expressed in E. coli cells. Ginsenosidase type III was able to hydrolyze 3-O-glucoside of multi-PPD-type ginsenosides. For instance, it was able to hydrolyze the 3-O-${\beta}$-D-(1${\rightarrow}$2)-glucopyranosyl of Rb1 to gypenoside XVII, and then to further hydrolyze the 3-O-${\beta}$-D-glucopyranosyl of gypenoside XVII to gypenoside LXXV. Similarly, the enzyme could hydrolyze the glucopyranosyls linked to the 3-O-position of Rb2, Rc, Rd, Rb3, and Rg3. With a larger enzyme reaction $K_m$ value, there was a slower enzyme reaction speed; and the larger the enzyme reaction $V_{max}$ value, the faster the enzyme reaction speed was. The $K_m$ values from small to large were 3.85 mM for Rc, 4.08 mM for Rb1, 8.85 mM for Rb3, 9.09 mM for Rb2, 9.70 mM for Rg3(S), 11.4 mM for Rd and 12.9 mM for F2; and $V_{max}$ value from large to small was 23.2 mM/h for Rc, 16.6 mM/h for Rb1, 14.6 mM/h for Rb3, 14.3 mM/h for Rb2, 1.81mM/h for Rg3(S), 1.40 mM/h for Rd, and 0.41 mM/h for F2. According to the $V_{max}$ and $K_m$ values of the ginsenosidase type III, the hydrolysis speed of these substrates by the enzyme was Rc>Rb1>Rb3>Rb2>Rg3(S)>Rd>F2 in order.

Keywords

References

  1. An, D. S., C. H. Cui, H. G. Lee, L. Wang, S. C. Kim, S. T. Lee, et al. 2010. Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. ${\beta}$-glucosidase that transforms ginsenoside Rb1 into the rare gypenosides XVII and LXXV. Appl. Environ. Microb. 76: 5827-5836. https://doi.org/10.1128/AEM.00106-10
  2. Chae, S. W., K. A. Kang, W. Y. Chang, M. J. Kim, S. J. Lee, Y. S. Lee, et al. 2009. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J. Agric. Food Chem. 57: 5777-5782. https://doi.org/10.1021/jf900331g
  3. Chen, G., M. Yang, Z. Lu, J. Zhang, H. Huang, Y. Liang, et al. 2007. Microbial transformation of 20(S)-protopanaxatriol-type saponins by Absidia coerulea. J. Nat. Prod. 70: 1203-1206. https://doi.org/10.1021/np070053v
  4. Gao, J., X. S. Zhao, H. B. Liu, Y. Y. Fan, H. R. Cheng, F. Liang, et al. 2010. A highly selective ginsenoside Rb1-hydrolyzing ${\beta}$-D-glucosidase from Cladosporium fulvum. Process Biochem. 45: 897-903. https://doi.org/10.1016/j.procbio.2010.02.016
  5. Hasegawa, H., J. H. Sung, S. Matsumiya, and M. Uchiyama. 1996. Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med. 62: 453-457. https://doi.org/10.1055/s-2006-957938
  6. Jin, F. X. 2009. Biotransformation of Natural Products, pp. 74-113. Chemical Industry Press, Beijing, China.
  7. Kim, J. H., S. Y. Cho, J. H. Lee, S. M. Jeong, I. S. Yoon, B. H. Lee, et al. 2007. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus. Brain Res. 1136: 190-199.
  8. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  9. Liu, C. Y., J. G. Song, P. F. Li, H. S. Yu, and F. X. Jin. 2011. Ginsenoside contents in three different ginseng. J. Dalian Polytechnic Univ. 30: 79-82.
  10. Liu, Z. Q., X. Y. Luo, G. Z. Liu, and Y. P. Chen. 2003. In vitro study of the relationship between the structure of ginsenoside and its antioxidative or prooxidative activity in free radical induced hemolysis of human erythrocytes. J. Agric. Food Chem. 51: 2555-2558. https://doi.org/10.1021/jf026228i
  11. Luan, H. W., X. Liu, X. H. Qi, Y. Hu, D. C. Hao, Y. Cui, and L. Yang. 2006. Purification and characterization of a novel stable ginsenoside Rb1-hydrolyzing ${\beta}$-D-glucosidase from China white jade snail. Process Biochem. 41: 1974-1980. https://doi.org/10.1016/j.procbio.2006.04.011
  12. Popovich, D. G. and D. D. Kitts. 2002. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch. Biochem. Biophys. 406: 1-8. https://doi.org/10.1016/S0003-9861(02)00398-3
  13. Stavro, P. M., M. N. Woo, T. F. Heim, L. A. Leiter, and V. Vuksan. 2005. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 46: 406-411. https://doi.org/10.1161/01.HYP.0000173424.77483.1e
  14. Su, J. H., J. H. Xu, W. Y. Lu, and G. Q. Lin. 2006. Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042. J. Mol. Catal. B Enzym. 38: 113-118. https://doi.org/10.1016/j.molcatb.2005.12.004
  15. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31: 1065-1071. https://doi.org/10.1124/dmd.31.8.1065
  16. Wang, J. Y. 2002. Biochemistry, pp. 356-361. Higher Education Press, Beijing, China.
  17. Weber, K., J. R. Pringle, and M. Osborn. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 26: 3-27.
  18. Yu, H. S., C. Z. Zhang, M. C. Lu, F. Sun, Y. Y. Fu, and F. X. Jin. 2007. Purification and characterization of ginsenosidase hydrolyzing multi-glycosides of protopanaxadiol ginsenoside, ginsenoside type I. Chem. Pharm. Bull. 55: 231-235. https://doi.org/10.1248/cpb.55.231
  19. Yu, H. S., Q. M. Liu, C. Z. Zhang, M. C. Lu, Y. Y. Fu, W. T. Im, et al. 2009. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochem. 44: 772-775. https://doi.org/10.1016/j.procbio.2009.02.005
  20. Zhang, J., H. Guo, Y. Tian, P. Liu, N. Li, J. Zhou, and D. Guo. 2007. Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochemistry 68: 2523-2530. https://doi.org/10.1016/j.phytochem.2007.05.028
  21. Zheng, H., Y. J. Jeong, J. M. Song, and G. E. Ji. 2011. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 11: 511-518. https://doi.org/10.1016/j.intimp.2010.12.022

Cited by

  1. Characterization of the ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides vol.97, pp.2, 2012, https://doi.org/10.1007/s00253-012-4324-5
  2. β-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-β-glucosides but not 20-O-β-glucoside and other glycosides of ginsenosides vol.97, pp.14, 2012, https://doi.org/10.1007/s00253-013-4828-7
  3. Identification and Characterization of a Ginsenoside-Transforming β-Glucosidase from Pseudonocardia sp. Gsoil 1536 and Its Application for Enhanced Production of Minor Ginsenoside Rg vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0096914
  4. Biotransformation of the Principal Ginsenosides of Panax ginseng Into Minor Glycosides Through the Action of Bacterium Paenibacillus sp. BG134 vol.50, pp.4, 2014, https://doi.org/10.1007/s10600-014-1054-1
  5. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848 vol.39, pp.3, 2012, https://doi.org/10.1016/j.jgr.2014.12.003
  6. Compound K Production from Red Ginseng Extract by β-Glycosidase from Sulfolobus solfataricus Supplemented with α- L -Arabinofuranosidase from Caldicellulosiruptor saccharo vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0145876
  7. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides vol.36, pp.6, 2012, https://doi.org/10.3109/07388551.2015.1083942
  8. Synergistic production of 20( S )-protopanaxadiol from protopanaxadiol-type ginsenosides by β-glycosidases from Dictyoglomus turgidum and Caldicellulosiruptor bescii vol.7, pp.1, 2012, https://doi.org/10.1186/s13568-017-0524-9
  9. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.None, 2018, https://doi.org/10.3389/fphar.2018.00188
  10. Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads vol.42, pp.1, 2012, https://doi.org/10.1007/s12034-019-1730-7
  11. Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I vol.43, pp.2, 2019, https://doi.org/10.1016/j.jgr.2017.10.001