• Title/Summary/Keyword: $H_2O$-Type

Search Result 1,740, Processing Time 0.034 seconds

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1997-2002
    • /
    • 2011
  • The nucleophilic substitution reactions of dicyclohexyl phosphinic chloride [3; $cHex_2$P(=O)Cl] with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at 60.0 $^{\circ}C$. The anilinolysis rate is too slow to be rationalized by the stereoelectronic effects. The rate is contrary to expectations for the electronic influence of the two ligands and exhibits exceptionally great negative deviation from the Taft's eq. The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines invariably change from primary normal ($k_H/k_D$ > 1; max $k_H/k_D$ = 1.10 with X = 4-MeO) with the strongly basic anilines (X = 4-MeO, 4-Me, 3-Me) to secondary inverse ($k_H/k_D$ < 1; min $k_H/k_D$ = 0.673 with X = 3-Cl) with the weakly basic anilines (X = H, 4-F, 4-Cl, 3-Cl). A concerted $S_N2$ mechanism is proposed on the basis of both secondary inverse and primary normal DKIEs. The obtained DKIEs imply that the fraction of a frontside attack increases as the aniline becomes more basic. A hydrogen-bonded, four-center-type transition state is suggested for a frontside attack, while the trigonal bipyramidal pentacoordinate transition state is suggested for a backside attack.

Effect of CuO on the Microstructural and Electrical Properties of (Pb)(La,Nd)$TiO_3$ Ceramics (CuO가 (Pb)(La,Nd)$TiO_3$ 세라믹스에 첨가시 미세구조와 전기적 특성에 미치는 영향)

  • Min, S.K.;Yoo, J.H.;Park, C.Y.;Yoon, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.446-450
    • /
    • 2001
  • In this study, microstructural and electrical properties of (Pb)(La,Nd)$TiO_3$ cerramics were investigated as a function of CuO addition. Taking into consideration Tc of $325^{\circ}C$, dynamic range of 49dB( at the wafer form) and density of $7.71g/cm^{3}$, it can be concluded that the specimen S2 sintered at $1200^{\circ}C$ is the best for the resonator application, Dynamic characteristics of energy-trapped 20MHz SMD type resonator as a function of internal dot size variation were also investigated. Dynamic range characteristics showed the highest value of 60.72dB at S2-4(dot size 1.13mm).

  • PDF

Coloration and Chemical Stability of SiO2 and SnO2 Coated Blue CoAl2O4 Pigment (SiO2, SnO2 코팅된 청색 CoAl2O4 안료의 색상, 물성 평가 연구)

  • Yun, JiYeon;Yu, Ri;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.377-381
    • /
    • 2014
  • This work describes the coloration, chemical stability of $SiO_2$ and $SnO_2$-coated blue $CoAl_2O_4$ pigment. The $CoAl_2O_4$, raw materials, were synthesized by a co-precipitation method and coated with silica ($SiO_2$) and tin oxide ($SnO_2$) using sol-gel method, respectively. To study phase and coloration of $CoAl_2O_4$, we prepared nano sized $CoAl_2O_4$ pigments which were coated $SiO_2$ and $SnO_2$ using tetraethylorthosilicate, $Na_2SiO_3$ and $Na_2SiO_3$ as a coating material. To determine the stability of the coated samples and their colloidal solutions under acidic and basic conditions, colloidal nanoparticle solutions with various pH values were prepared and monitored over time. Blue $CoAl_2O_4$ solutions were tuned yellow color under all acidic/basic conditions. On the other hand, the chemical stability of $SiO_2$ and $SnO_2$-coated $CoAl_2O_4$ solution were improved when all samples pH values, respectively. Phase stability under acidic/basic condition of the core-shell type $CoAl_2O_4$ powders were characterized by transmission electron microscope, X-ray diffraction, CIE $L^*a^*b^*$ color parameter measurements.

Effects of Fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver Extracts on Regulation of Apoptosis in Articular Chondrocytes (Primary Chondrocytes에서 발효우슬, 당귀, 두충 복합물의 세포사멸 조절 효과)

  • Dakyung Kim;Wonhee Jo;Minhee Lee;Hyun Cheol Jeong;Sung-Jin Lee;Seunghun Lee;Jeongmin Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.7-14
    • /
    • 2023
  • The effects of fermented Achyranthes japonica Nakai, Angelica gigas Nakai, and Eucommia ulmoides Oliver extracts (FAAE) on regulation of inflammation and apoptosis were investigated in primary cultured rat cartilage cells. To identify the protective effects of FAAE against H2O2, cell survival was measured by MTT assay. Smad3, Collagen type I, MMP3, and MMP13 were measured by real-timpe PCR and westernbot and the inflammatory (NF-κB pathway, COX-2, iNOS) factors were determined by western blot. The apoptosis related factors (JNK, c-Fos, c-Jun, caspase 3, Bax, and Bcl-2) were determined by western blot. FAAE significantly increased the follwing: H2O2 treated cell survival, mRNA and protein expression of Smad 3, collagen type I. In addition, FAAE significantly decreased the protein expression of inflammatory and apoptosis related factors. This study suggests that FAAE have a protection effect of chondrocytes through inhibition of inflammation and apoptosis. Thus, FAAE is a therapeutic potential food componet in osteoarthritis.

Process and Performance Analysis of a-Si:H/c-Si Hetero-junction Solar Sells Prepared by Low Temperature Processes (저온 공정에 의한 a-Si:H/c-Si 이종접합 태양전지 제조 및 동작특성 분석)

  • Lim, Chung-Hyun;Lee, Jeong-Chul;Jeon, Sang-Won;Kim, Sang-Kyun;Kim, Seok-Ki;Kim, Dong-Seop;Yang-Sumi;Kang-Hee-Bok;Lee, Bo-young;Song-Jinsoo;Yoon-Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-200
    • /
    • 2005
  • In this work, we investigated simple Aㅣ/TCO/a-Si:H(n)/c-Si(p)/Al hetero-junction solar cells prepared by low temperature processes, unlike conventional thermal diffused c-Si solar cells. a-Si:H/c-Si hetero-junction solar cells are processed by low temperature deposition of n-type hydrogenated amorphous silicon (a-Si:H) films by plasma-enhanced chemical vapor deposition on textured and flat p-type silicon substrate. A detailed investigation was carried out to acquire optimization and compatibility of amorphous layer, TCO (ZnO:Al) layer depositions by changing the plasma process parameters. As front TCO and back contact, ZnO:Al and AI were deposited by rf magnetron sputtering and e-beam evaporation, respectively. The photovoltaic conversion efficiency under AMI.5 and the quantum efficiency on $1cm^2$ sample have been reported. An efficiency of $12.5\%$ is achieved on hetero-structure solar cells based on p-type crystalline silicon.

  • PDF

Conversion of Coordinated Sulfur Atom into Sulfoxide Group via Oxidation Reaction of Metal Complexes of Tetradentates and Sulfur Amino Acids (네자리 리간드-황아미노산 금속착물의 산화반응에 의한 배위된 황원자의 sulfoxide 원자단으로의 전환)

  • Sung Sil Lee;Peter Fu;Sung Rack Choi;Moo Jin Jun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.516-521
    • /
    • 1989
  • Reaction between the $N_2O_2-type$ tetradentate ligand, ethylenediamine-N,N'-di-S-${\alpha}$-isobutylacetic acid (SS-emiba) and $RhCl_3{\cdot}3H_2O$ has yielded ${\Delta}-s-cis-\;and\;{\wedge}-uns-cis-[Rh(SS-eniba)Cl_2]-$. ${\Delta}-s-cis-[Rh(SS-eniba)Cl_2]^-$ has been utilized to react with S-methyl-L-cystcine(Smc) to give ${\Delta}-s-cis-[Rh(SS-eniba(Smc)]^+$. The oxidation of ${\Delta}-s-cis-[Rh(SS-eniba(Smc)]^+$ using $H_2O_2$ has produced ${\Delta}-s-cis-[Rh(SS-eniba)(Smc-o)]^+$, in which the coordinated sulfur has been converted into the sulfoxide group. In a separate series of experiments the S-methyl-L-cysteine is oxidized by $H_2O_2$ to give S-methyl-L-cysteine sulfoxide, which is then coordinated to ${\Delta}-s-cis-[Rh(SS-eniba)Cl2]^-$ to make the standard complet of ${\Delta}-s-cis-[Rh(SS-eniba)(Sme-o)]+$ for comparison with the complex obtained from the oxidation of ${\Delta}-s-cis-[Rh(SS-eniba)(Smc)]^+\;by\;H_2O_2.$

  • PDF

Formation of Uniform SnO2 Coating Layer on Carbon Nanofiber by Pretreatment in Atomic Layer Deposition (전처리를 이용한 탄소 나노 섬유의 균일한 SnO2 코팅막 형성)

  • Kim, Dong Ha;Riu, Doh-Hyung;Choi, Byung Joon
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • Carbon nanofibers (CNF) are widely used as active agents for electrodes in Li-ion secondary battery cells, supercapacitors, and fuel cells. Nanoscale coatings on CNF electrodes can increase the output and lifespan of battery devices. Atomic layer deposition (ALD) can control the coating thickness at the nanoscale regardless of the shape, suitable for coating CNFs. However, because the CNF surface comprises stable C-C bonds, initiating homogeneous nuclear formation is difficult because of the lack of initial nucleation sites. This study introduces uniform nucleation site formation on CNF surfaces to promote a uniform $SnO_2$ layer. We pretreat the CNF surface by introducing $H_2O$ or $Al_2O_3$ (trimethylaluminum + $H_2O$) before the $SnO_2$ ALD process to form active sites on the CNF surface. Transmission electron microscopy and energy-dispersive spectroscopy both identify the $SnO_2$ layer morphology on the CNF. The $Al_2O_3$-pretreated sample shows a uniform $SnO_2$ layer, while island-type $SnO_x$ layers grow sparsely on the $H_2O$-pretreated or untreated CNF.

A study on the oxide etching using multi-dipole type magnetically enhanced inductively coupled plasmas (자장강화된 유도결합형 플라즈마를 이용한 산화막 식각에 대한 연구)

  • 안경준;김현수;우형철;유지범;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.403-409
    • /
    • 1998
  • In this study, the effects of multi-dipole type of magnets on the characteristics of the inductively coupled plasmas and $SiO_2$ etch properties were investigated. As the magnets, 4 pairs of permanent magnets were used and, to etch $SiO_2, C_2F_6, CHF_3, C_4F_8, H_2$, and their combinations were used. The characteristics of the magnetized inductively coupled plasmas were investigated using a Langmuir probe and an optical emission spectrometer, and $SiO_2$ etch rates and the etch selectivity over photoresist were measured using a stylus profilometer. The use of multi-dipole magnets increased the uniformity of the ion density over the substrate location even though no significant increase of ion density was observed with the magnets. The use of the magnets also increased the electron temperature and radical densities while reducing the plasma potential. When $SiO_2$ was etched using the fluorocarbon gases, the significant increase of $SiO_2$ etch rates and also the increase of etch uniformity over the substrate were obtained using the magnets. In case of gas combinations with hydrogen, $C_4F_8/H_2$ showed the highest etch rates and etch selectivities over photoresist among the gas combinations with hydrogen used in the experiment. By optimizing process parameters at 1000 Watts of inductive power with the magnets, the highest $SiO_2$ etch rate of 8000 $\AA$/min could be obtained for 50% $C_4F_8/50% H_2$.

  • PDF

Characteristics of Ta2O5 thin film prepared by RTMOCVD (RTMOCVD법에 의해 제조된 Ta2O5 박막의 특성)

  • So, Myoung-Gi;Kwong, Dim Lee
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.101-105
    • /
    • 1999
  • Ultra thin $Ta_2O_5$ gate dielectrics were prepared by RTMOCVD (rapid thermal metal organic chemical vapor deposition) using Ta source $TaC_{12}H_{30}O_5N$ and $O_2$ gaseous mixtures. As a result, $Ta_2O_5$ thin films showed significantly low leakage current compared to $SiO_2$ of identical thickness, which was due to the stabilization of the interfacial layer by NO ($SiO_xN_y$) passivation layer. The conduction of leakage current in $Ta_2O_5$ thin films was described by the hopping mechanism of Poole-Frenkel (PF) type.

  • PDF