The crystal structure of (1,3,6,9,11,14-hexaazatricycol[12.2.1.$1^{6,9}$]octadecane)copper(Ⅱ) perchlorate, Cu($C_{12}H_{26}N_6$)$(ClO_4)_2$, has been determined by the X-ray diffraction methods. The crystal data are as follows: Mr=516.9, triclinic, ${\alpha}=8.572\;(2)$, b=8.499 (3), c=15.204 (3) ${\AA}$, ${\alpha}=80.42\;(5),\;{\beta}=73.57\;(3),\;{\gamma}=69.82\;(4)^{\circ},\;V=994.2\;{\AA}^3,\;D_C=1.726\;gcm^{-3}$, space group $P{\tilde{1}},\;Z=2,\;{\mu}=21.27\;cm^{-1}&, F(000)=534 and T=297 K. The structure was solved by direct methods and refined by full-matrix least-squares methods to and R value of 0.081 for 1608 observed reflections measured with graphite-mono-chromated Mo Ka radiation on a diffractometer. There are two independent complexes in the unit cell. The two copper ions lie at the special positions (1/2, 0, 0) and (0, 1/2, 1/2)and each complex possesses crystallographic center of symmetry. Each Cu ion is coordinated to four nitrogen donors if the hexaazamacrotricyclic ligand and weakly interacts with two oxygen atoms of the perchlorate ions to form a tetragonally distorted octahedral coordination geometry. The Cu_N (sec), Cu_N(tert) and Cu_O coordination distances are 1.985 (14), 2.055 (14) and 2.757 (13) ${\AA}$ for the complex A and 1.996 (10), 2.040 (11) and 2.660 (13) ${\AA}$ for the complex B, respectively. The macrocycles in the two independent cations assume a similar conformation with the average r.m.s. deviation of 0.073 ${\AA}$. Two 1,3-diazacyclopentane ring moieties of the hexaazamacrotricyclic ligand are placed oppositely and almost perpendicularly to the square coordination plane of the ruffled 14-membered macrocycle. The secondary N atoms are hydrogen-bonded to the perchlorate O atoms with distances of 3.017 (23) and 3.025 (19) ${\AA}$ for the complexes A and B, respectively.