DOI QR코드

DOI QR Code

Vitamin B12 Model Complexes: Synthesis and Characterization of Thiocyanato Cobaloximes and Thiocyanato Bridged Dicobaloximes of O-donor Ligands: DNA Binding and Antimicrobial Activity

비타민 B12 모델 착물: O-주개 리간드인 Thiocyanato Cobaloximes 및 Thiocyanato로 연결된 Dicobaloximes의 합성 및 특성규명: DNA 결합 및 향균 활성

  • Mustafa, Bakheit (Department of Chemistry, Osmania University) ;
  • Satyanarayana, S. (Department of Chemistry, Osmania University)
  • Received : 2009.03.18
  • Accepted : 2010.05.20
  • Published : 2010.12.20

Abstract

Complexes of thiocyanato(L)cobaloximes where L is urea, acetamide, semicrabazide and formamide were synthesized and characterized. The reaction of thiocyanato (L) cobaloximes (SCNCo$(DH)_2$(L)) with benzyl (aquo) cobaloxime $PhCH_2Co(DH)_2(OH_2)$ was found to produce a series of thiocyanato bridged dicobaloximes of a general formula of $PhCH_2Co(DH)_2SCNCo(DH_2)(L)$. Evidence for formulation as dicobaloximes containing thiocyanato ligand bridges was obtained from infrared data which show $20-45cm^{-1}$ increase in vCN upon formation of the dicobaloxime from the corresponding terminal thiocyanocobaloxime (SCNCo$(DH)_2$(L)). Further characterization of these two series was done on the basis of ($^1H$,$^{13}C$)NMR, LCMS and elemental analysis. Anti-microbial activity of thiocyanato(L)cobaloximes and thiocyanato bridged dicobaloximes were screened against E. Coli. The DNA-binding behaviors of both monomers and dimers were investigated by spectroscopic methods and viscosity measurements. The results indicated that the dimer complexes bind with calf-thymus DNA in an intercalative mode via the terminal benzyl ring into the base pairs of DNA. It was observed that the monomer complexes did not interact with DNA. Fluorescence spectra for the interaction between thiocyanato bridged dicobaloximes and DNA were also studied.

L이 urea, acetamide, semicrabazide, formamide 인 thiocyanato (L) Cobaloxime 착물을 합성하고 특성을 규명하였다. Thiocyanato(L)cobaloximes (SCNCo$(DH)_2$(L))과 benzyl (aquo) cobaloxime $PhCH_2Co(DH)_2(OH_2)$를 반응시켜 일반 분자식 $PhCH_2Co(DH)_2SCNCo(DH_2)(L)$를 갖는 일련의 thiocyanato로 연결된 dicobaloximes 생성물을 얻었다. Thiocyanato 리간드의 다리결합을 포함하고 있는 dicobaloximes의 조성에 대한 증거로 말단의 thiocyanocobaloxime (SCNCo$(DH)_2$(L))으로부터 dicobaloxime이 형성되면서 vCN이 $20-45cm^{-1}$ 증가하게 되는 적외선 데이터를 들 수 있다. 이러한 두 일련의 물질에 대한 더많은 특성을 ($^1H$, $^{13}C$) NMR, LCMS 및 원소분석을 통하여 확인하였다. Thiocyanato (L) cobaloximes 및 thiocyanato로 연결된 dicobaloxime의 항균 활성은 E. Coli에 의해 조사하였다. 두 단량체와 이합체 모두의 DNA-결합 행동은 분광학적 방법 및 점성도 측정을 통하여 조사하였다. 그 결과 이합체 착물은 calf-thymus DNA와 DNA의 염기쌍에 말단의 벤질 고리를 통해 사이에 끼인 형태로 결합되어 있음을 나타내었다. 단량체 착물은 DNA와 상호작용하지 않는 것으로 관찰되었다.

Keywords

References

  1. Ravi Kumar Reddy, N.; Sudarshan Reddy, D.; Satyanarayana, S. Bull. of pure and Appl. Sci. 2002, 21, 67.
  2. Schrauzer, G. N. Acc. Res. 1968, 1, 97. https://doi.org/10.1021/ar50004a001
  3. Schrauzer, G. N.; Windgassen, R. J. J. Am. Chem. Soc. 1966, 88, 3788.
  4. Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Coord. Chem. Rev. 1985, 63, 1. https://doi.org/10.1016/0010-8545(85)80021-7
  5. Randaccio, L.; Bahor, N. B.; Zangrando, E.; Marzilli, L. G.; Chem. Soc. Rev. 1989, 18, 225. https://doi.org/10.1039/cs9891800225
  6. Randaccio, L. Inorg. Chem. 1999, 21, 327. https://doi.org/10.1080/02603599908012011
  7. Essenberg, M. K.; Frey, P. A.; Abeles, R. H. J. Am. Chem. Soc. 1971, 93, 1242. https://doi.org/10.1021/ja00734a036
  8. Cockle, S. A.; Hill, H. A. O.; Williams, R. J. P.; Davies, S. P.; Foster, A. M. J. Am. Chem. Soc. 1972, 94, 275. https://doi.org/10.1021/ja00756a050
  9. Carty, T. J.; Babior, B. M.; Abeles, R. H. J. Biol. Chem. 1971, 246, 6313.
  10. Miller, W. W.; Richards, J. H. J. Am. Chem. Soc. 1969, 91, 1498. https://doi.org/10.1021/ja01034a037
  11. Switzer, R. L.; Baltimore, B. G.; Barker, H. A. J. Biol. Chem. 1969, 244, 5263.
  12. Helpern. J. Science (Washington D,C) 1985, 227, 869. https://doi.org/10.1126/science.2857503
  13. Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759. https://doi.org/10.1021/cr941154y
  14. Lalrempuia, R.; Mohan Rao, K.; Patrick.; Carroll, J.; Gleen, P. A.; Yap.; Kreisel, K. A. J. Organomet. Chem. 2005, 690, 3990.
  15. Canpolat, E.; Kaya, M. T. J. Chem. 2004, 28, 235.
  16. Marmur, J. J. Mol. Biol. 1961, 3, 208. https://doi.org/10.1016/S0022-2836(61)80047-8
  17. Reichmann, M. F.; Rice, S. A.; Thomas, C. A.; Doty, P. J. Am. Chem. Soc. 1954, 76, 3047. https://doi.org/10.1021/ja01640a067
  18. Schrauzer, G. N. Inorg. Synth. 1968, 11, 61. https://doi.org/10.1002/9780470132425.ch12
  19. Tschugaeff, L; Dtsch, B. Chem. Ges. 1907, 40, 2398.
  20. Schillinger, U.; Lucke, F. K. Appl. Environ. Microb. 1989, 55(8), 1901.
  21. Brown, K. L.; King, R. B.; Eisch, J. J. Organomet. Synthesis Elisevier: 1986, 108, 2093.
  22. Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1968.
  23. Marmur, J. Mol. Biol. 1961, 3, 208. https://doi.org/10.1016/S0022-2836(61)80047-8
  24. Castello, R. A.; Mac-Coll, C. P.; Haim, A. Inorg.Chem. 1971, 10, 203. https://doi.org/10.1021/ic50095a041
  25. Swanson, B. I. Inorg. Chem. 1971, 15, 253.
  26. Bignozzi, C. A.; Argazzi, R.; Schoonover, J. R; Gardon, K. C.; Dyer, R. B.; Scandola, F. Inorg. Chem. 1996, 31, 5260.
  27. Dows, O. A.; Haim, A; Wilmarth, W. K. J. Inorg. Nucl. Chem. 1969, 21, 33.
  28. Rajeshwar rao, A.; Satyanarayana, S. Indian Acad. Sci. 1998, 110(1), 31.
  29. Brown, K. L.; Satyanarayana, S. Inorg. Chem. 1992, 31, 1366. https://doi.org/10.1021/ic00034a014
  30. Bersukker, B.; Leong, M. K; Boggs, J. E; Pearl Man, R. S. Bol. Soc. Chil. Quim. 1997, 42, 405.
  31. Cini, R.; Giorgi, G; Laschi, F.; Rossi, C.; Marzilli, L. G. J. Biomol. Struct. Dyn. 1990, 7, 859. https://doi.org/10.1080/07391102.1990.10508529
  32. Moucheron, C.; Kirsch-De Mesmaeker, A. J. Physical Organic Chem. 1998, 11, 577. https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<577::AID-POC53>3.0.CO;2-X
  33. Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1992, 31, 9319. https://doi.org/10.1021/bi00154a001
  34. Satyanarayana, S.; Dabrowiak, J. C.; Chaires, J. B. Biochemistry 1993, 32, 2573.

Cited by

  1. Synthesis, characterization and fungicidal activity of binary and ternary metal(II) complexes derived from 4,4′-((4-nitro-1,2-phenylene) bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one) vol.136, 2015, https://doi.org/10.1016/j.saa.2014.10.112
  2. Transition metal complexes of a hydrazone-oxime ligand containing the isonicotinoyl moiety: Synthesis, characterization and microbicide activities vol.32, pp.7, 2018, https://doi.org/10.1002/aoc.4376