DOI QR코드

DOI QR Code

Separation and Sensitive Determination of Sb Species using Yeast Bonded Bio-column with Continuous Hydride Generation

이이스트 고정 bio칼럼을 이용한 Sb의 화학종분리 및 연속적 수소화물발생법에 의한 감도개선

  • Lee, Jeong-Ok (Department of Chemistry Education, Korea National University of Education) ;
  • Kwon, Hyo-Shik (School of Science Education, Chungbuk National University) ;
  • Pak, Yong-Nam (Department of Chemistry Education, Korea National University of Education)
  • 이정옥 (한국교원대학교 화학교육학과) ;
  • 권효식 (충북대학교 사범대학 과학교육학부) ;
  • 박용남 (한국교원대학교 화학교육학과)
  • Received : 2010.09.17
  • Accepted : 2010.10.27
  • Published : 2010.12.20

Abstract

Yeast is immobilized upon $100{\mu}m$ CPG(controlled pore glass bead) to separate $Sb^{3+}$ and $Sb^{5+}$. Continuous hydride generation is performed after the bio-column. The optimum conditions are 0.8 M nitric acid as an eluent with the flow rate of 1.0 mL $min^{-1}$ and the optimum conditions for the generation of hydride are 2 M HCl, 3% (w/v) $NaBH_4$ with the flow rate of 0.83 mL $min^{-1}$, Ar carrier gas flow rate of 50 mL $min^{-1}$. Two species are separated at 112 and 354 seconds each. The sensitivity is enhanced by 10 times for $200{\mu}L$ of sample and the detection limits are 3.0 ppb and 7.0 ppb for $Sb^{3+}$ and $Sb^{5+}$, respectively. When compared with the standard samples, this method showed accurate results.

매우 작은 유리구슬(직경 $100{\mu}m$이하)위에 이이스트를 공유결합시킨 bio컬럼을 제작하여 $Sb^{3+}$$Sb^{5+}$를 선택적으로 분리하고 연속적 수소화물 발생법을 이용하여 감도를 개선하였다. 최적 용리조건은 용리액 0.8 M 질산으로 흐름속도 1.0 mL $min^{-1}$이며 수소화물 발생의 최적조건은 HCl 2 M, 환원제로 $NaBH_4$ 3% (w/v), 흐름속도는 0.83 mL $min^{-1}$, 수소화물을 운반하는 아르곤기체의 흐름속도는 50 mL $min^{-1}$ 이었다. 이러한 조건에서 두 화학종의 분리시간은 각각 112초와 354초였다. $200{\mu}L$의 시료를 사용하였을 때 감도는 10 여배 개선되었고 검출한계는 $Sb^{3+}$$Sb^{5+}$에 대하여 각각 3.0 ppb와 7.0 ppb 이었다. 표준시료를 제작하여 분석한 결과, 정확한 결과를 얻을 수 있었다.

Keywords

References

  1. Iffland, R. In Handbook on Toxicity of Inorganic Compounds, Seiler, H. G.; Sigel, H. ed.; Marcel Dekker: New York, 1998.
  2. Elinder, D. G.; Friberg, L. In Handbook on the Toxicology of Metals, Friberg, L.; Nordberg, G. F.; Vouk, V. B. ed.; Elsevier:Amsterdam, 1979; p 283.
  3. Lawreys, R. R.; Hoet, P. Industrial Chemical Exposure, Guidelines for Biological Monitoring; Lewis Publishers: Boca Raton, FL, 1993, 2nd edn. p 19.
  4. International Agency for Research on Cancer (IARC), IARC Monograph, Vol. 47, IARC, Lyon, 1989, p 291.
  5. Versieck, J.; Cornelis, R. Trace Elements in Human Plasma or Serum; CRC Press: Boca Raton, FL, 1989.
  6. Welz, B. Atomic Absorption Spectrometry; VCH: Weinheim, 1985, 2nd edn.
  7. Bowman, J.; Fairman, B.; Catterick, T. J. Anal. At. Spectrom. 1997, 12, 313. https://doi.org/10.1039/a605704g
  8. Smith, M. M.; White, M. A.; Wilson, H. K. J. Anal. At. Spectrom. 1995, 10, 349. https://doi.org/10.1039/ja9951000349
  9. Uggerud, H.; Lund, W. J. Anal. At. Spectrom. 1995, 10, 405. https://doi.org/10.1039/ja9951000405
  10. Costantini, S.; Giordano, R.; Rizzica, M.; Benedetti, F. Analyst 1985, 110, 1355. https://doi.org/10.1039/an9851001355
  11. Denys,S.; Tacka, K.; Cabochea, J.; Delalaina, P. Chemosphere 2009, 74, 711. https://doi.org/10.1016/j.chemosphere.2008.09.088
  12. Zheng, F.; Qian, S.; Li, S.; Husang, X.; Lin, L. Anal. Sci. 2006, 22, 1319. https://doi.org/10.2116/analsci.22.1319
  13. Smichowski, P; Madrid, Y.; Guntinas, M. B.; Cámara, C. J. Anal. At. Spectrom. 1995, 10, 815. https://doi.org/10.1039/ja9951000815
  14. Zhang, X.; Cornelis, R.; Mees, L. J. Anal. At. Spectrom. 1998, 13, 205. https://doi.org/10.1039/a706621j
  15. Caruso, J. in Handbook of Elemental Speciation, ed.; Cornelis, R., Crews, H., Heumann, K. Eds.; Wiley: New York, 2003.
  16. Krachler, M.; Emons, H. J. Anal. At. Spectrom. 2000, 15, 281. https://doi.org/10.1039/a908939j
  17. Wei, C.; Liu, J. Talanta 2007, 73(3), 540. https://doi.org/10.1016/j.talanta.2007.04.026
  18. Tian, Y.; Chen, M.; Chen, X.; Wang, J.; Hirano, Y.; Sakamoto, H.; Setsu, I. J. Anal. At. Spectrom. 2010, 25, 48. https://doi.org/10.1039/b913198a
  19. Yaman, M.; Gucer, S. Analusis 1995, 23, 168.
  20. Maquieira, A.; Elmahadi, H. A. M.; Puchades, R. Anal. Chem. 1994, 66, 1462. https://doi.org/10.1021/ac00081a017
  21. Maham, C. A.; Holcombe, J. A. Anal. Chem. 1992, 64, 1933. https://doi.org/10.1021/ac00041a031
  22. Abercrombie, F. N.; Silvester, M. D; Cruz, R. B. Ultratrace Metal Analysis in Biological Sciences and Environment; Adv. Chem. Ser. 172; American Chemical Society: Washington, DC, 1979; pp 10-26.
  23. Koh, J.; Kwon, Y.; Pak, Y. Microchemical Journal 2005, 80, 195. https://doi.org/10.1016/j.microc.2004.07.011
  24. Kim, S. T.; Im, Y. R.; Park, K. S.; Jung, J. H. Analytical Science & Technology 2000, 13, 2.