• 제목/요약/키워드: $H_{\infty)$ control

검색결과 704건 처리시간 0.027초

크레인 스프레더의 Swing Motion 제어에 관한 연구 (A Study on Swing Motion Control System Design for the Spreader of the Crane)

  • 채규훈;김영복
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.54-60
    • /
    • 2003
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is shown to be useful and robust to disturbances like winds and initial sway motion.

  • PDF

크레인 스프레더의 Swing Motion 제어에 관한 연구 : 로프 길이변화를 고려한 경우 (A Study on Swing Motion Control System Design for the Spreader of the Crane with Varying Rope Length)

  • 안상백;채규훈;김영복
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 2004
  • In general, the swing motion of the crane is controlled and suppressed by activating the trolley motion. In this paper, we suggest a new type of anti-sway control system of the crane. In the proposed control system, a small auxiliary mass(moving-mass) is installed on the spreader and the swing motion is controlled by moving the auxiliary mass. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. In this paper, we apply the $H_{\infty}$ based control technique to the anti-sway control system design problem. And the experimental result shows that the proposed control system is useful and robust to disturbances like winds and initial sway motion.

  • PDF

폴리토픽 모델을 위한 PI 형 H∞ 제어기의 LMI 기반 설계 (LMI-based Design of PI-type H∞ Controller for Poly topic Models)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.255-257
    • /
    • 2009
  • The robust stabilization problem of a multivariable uncertain system with a polytopic model is considered. A PI-type $H_{\infty}$ controller with a low pass filter is used for robust stabilization and noise rejection. The problem is reduced to an LMI optimization problem. A sufficient condition for the existence of the PI controller is derived in terms of LMIs. The PI gain matrices are parameterized by using the solution matrices to the existence conditions. Finally, a numerical design example is given.

선형행렬부등식을 이용한 자기 부상계의 강인성 제어 (A Robustness Control of Magnetic Levitation System Using Linear Matrix Inequality)

  • 김창화;양주호
    • 동력기계공학회지
    • /
    • 제3권4호
    • /
    • pp.79-85
    • /
    • 1999
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor system because of little friction, no lubrication, no noise and so on. The magnetic levitation system needs the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of sensor easily goes into troublesome caused by sensor failure discord between the measurement point and the control point etc. This paper gives a controller design method of magnetic levitation system which satisfies the given $H_{\infty}$ control performance and the robust stability of the presence of physical parameter perturbations. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

불확정성 선형시스템에 대한 $H_{\inf}$ 노옴 성능 경계를 만족하는 신뢰성 제어시스템의 설계 (Design of Reliable Control System Guaranteeing $H_{\inf}-norm$ Peformance Bound for Uncertain Linear System)

  • 박세화
    • 전자공학회논문지B
    • /
    • 제33B권8호
    • /
    • pp.1-14
    • /
    • 1996
  • Design of a reliable control systems is investigated for a class of uncertain linear plants. The uncertainty considered here is for the ase of uncertainty in the system matrix. A decentralized control scheme with two observer-based feedback controllers is developed, and it is shown that the resulting closed-loop system is reliable in the sense that the control scheme provides guaranteed stability and $H_{\infty}$-norm bounded performance in the event of sensor and/or actuator failures as well as in the presence of parameter uncertainties. We observed that soft-type failures were additional exogenous inputs to the closed-loop system. As a results, the sensor and/or actuator failures can be tolerated in the design, which is achieved by extending the methodology developed in.

  • PDF

H^$\infty$ Control for Linear Systems with Delayed Sate and Control

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권5호
    • /
    • pp.27-32
    • /
    • 1997
  • This paper presents an H\ulcorner controller design method for linear time-invariant systems with delayed state and control. Using the second method of Lyapunov, the stability for delayed systems is discussed. For delayed systems, we derive a sufficient condition of the bounded real lemma(BRL) which is similar to GBRL for nondelayed systems. And the sufficent conditions for the existence of an H\ulcorner controller of any order are given in terms of three linear matrix inequalities(LMIs). Further, we briefly explain how to construct such controllers from the positive definite solutions of their LMIs and gie a simple example to illustrate the validity of the proposed design procedure.

  • PDF

계수조건부 LMI를 이용한 다목적 제어기 설계 (Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method)

  • 김석주;김종문;천종민;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

멀티팬을 가진 부상기의 모델링과 강인한 제어기의 설계 (Modeling and Design of Robust Control System for VTOL Aircraft with Multi Fan)

  • 신춘식;변기식;최연욱;이형기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1116-1118
    • /
    • 1996
  • This paper designs a digital controller by making use of the $H^{\infty}$ control algorithm and $\mu$-synthesis in order to keep a balance of the VTOL(Vertical Take Off and Landing Plane) vehicle with 4 fans. A identification of the actual model is acquired by the vehicle rolling, pitching and yawing angles for a pseude-random signal input and various identification theories. In spite of parameter variations and existing disturbances, the designed controller showes its robust performance through simulations and experiments.

  • PDF

H제어기법에 의한 커플링구조의 위치동기제어에 관한 연구 (A Study on the Position-Synchronous Control of Coupling Structure by H Approach)

  • 변정환
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2052-2059
    • /
    • 2002
  • In this study, a synchronous controller algorithm being applicable to two-axis position synchronzation is developed. Based on coupling structure, the synchronous control system is composed of speed and synchronous controllers. The speed controller is designed to follow a speed reference. In addition, the synchronous controller is designed from the viewpoint of accurate synchronization and robust stability in H$\infty$ synthesis. Finally, the effectiveness of the presented controller is demonstrated through extensive experiments.

不確實한 環境에 接觸하는 매니퓰레이터의 强靭制御 (Robust Control of a Manipulator Contacting the Uncertain Environment)

  • 이상무
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.175-185
    • /
    • 1995
  • 본 논문은 불확실한 환경에 접촉하는 매니플레이터의 강인 제어법을 제시하였다. 이 제어법은 고차수 보상기를 응용한 표적특성에 $H_{\infty}$ 강인제어 설계법을 적용하여 얻어졌다. 접촉중의 위치와 힘에 대한 강인 안정성과 강인 성능 조건을 유도하였다. 결과에 의하면, 위치제어기는 강인 안정성과 강인 성능 조건을 동시에 향상시킬 수 있으나, 힘 제어기는 그 둘 사이에 최적화가 요구되었다. 강인 성능 제어기를 얻기 위한 최적화 설계기법은 변형 해석 기법을 사용하였으며, 결과의 예를 제시하였다. 이 예에서는 힘제어기의 강인 성능이 설계될 수 있음을 보였다.

  • PDF