• 제목/요약/키워드: $H^{\infty}$-optimization problem

검색결과 49건 처리시간 0.02초

유전알고리즘을 이용한 전력계통 안정화 장치의 강인한 $H_\infty$최적 튜닝 ($H_\infty$ Optimal tuning of Power System Stabilizer using Genetic Algorithm)

  • 정형환;이준탁;이정필;한길만
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권3호
    • /
    • pp.85-94
    • /
    • 2000
  • In this paper, a robust H$\infty$ optimal tuning problem of a structure-specified PSS is investigated for power systems with parameter variation and disturbance uncertainties. Genetic algorithm is employed for optimization method of PSS parameters. The objective function of the optimization problem is the H$\infty$-norm of a closed loop system. The constraint of the optimization problem are based on the stability of the controller, limits on the values of the parameters and the desired damping of the dominant oscillation mode. It is shown that the proposed H$\infty$ PSS tuned using genetic algorithm is more robust than conventional PSS.

  • PDF

Hankel-근사화를 이용한 $H^{\infty}$--최적설계 ($H^{\infty}$-Optimal Design Using Hankel-Approximation)

  • 이경준;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.34-39
    • /
    • 1991
  • In this paper, we provide a treatment of the $H^{\infty}$-mixed sensitivity optimization approach to feedback system design. With compromising between the effect of a disturbance at the plant output and the effect of plant perturbations, we propose an algorithm to design robust controller. A $H^{\infty}$-optimization problem is to be equivalent to a Hankel-approximation, this enables the problem to be solved using state-space methods based on balanced realizations.s.

  • PDF

[ $H_{\infty}$ ] Control of 2-D Discrete State Delay Systems

  • Xu Jianming;Yu Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.516-523
    • /
    • 2006
  • This paper is concerned with the $H_{\infty}$ control problem of 2-D discrete state delay systems described by the Roesser model. The condition for the system to have a specified $H_{\infty}$ performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design procedure for $H_{\infty}$ state feedback controllers is given by solving a certain LMI. The design problem of optimal $H_{\infty}$ controllers is formulated as a convex optimization problem, which can be solved by existing convex optimization techniques. Simulation results are presented to illustrate the effectiveness of the proposed results.

컨벡스 최적화를 이용한 혼합 $H_2/H_{\infty}$ 필터의 설계 (Design of a Mixed $H_2/H_{\infty}$ Filter Using Convex Optimization)

  • 진승희;나원상;윤태성;박진배;최윤호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.750-753
    • /
    • 1998
  • This paper gives a simple parameterization of all stable unbiased filters to solve the suboptimal mixed $H_2/H_{\infty}$ filtering problem. Using the central filter, mixed $H_2/H_{\infty}$ filter is designed which minimizes the upper bound for the $H_2$ norm of the transfer matrix from a white noise to the estimation error subject to an $H_{\infty}$ norm constraint on the transfer matrix from an energy-bounded noise to the estimation error. The problem of finding suitable estimator gain can be converted into a convex optimization problem involving linear matrix inequalities.

  • PDF

LMI를 이용한 축소차수 $H_{\infty}$ 제어기 설계 (Design of a reduced-order $H_{\infty}$ controller using an LMI method)

  • 김석주;정순현;천종민;김춘경;이종무;권순만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.729-731
    • /
    • 2004
  • This paper deals with the design of a low order $H_{\infty}$ controller by using an iterative linear matrix inequality (LMI) method. The low order $H_{\infty}$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

DISCRETE-TIME MIXED $H_2/H_{\infty}$ FILTER DESIGN USING THE LMI APPROACH

  • Ryu, Hee-Seob;Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.129-132
    • /
    • 1999
  • This paper deals with the optimal filtering problem constrained to input noise signal corrupting the measurement output for linear discrete-time systems. The transfer matrix H$_2$and/or H$_{\infty}$ norms are used as criteria in an estimation error sense. In this paper, the mixed $H_2/H_{\infty}$ filtering Problem in lineal discrete-time systems is solved using the LMI approach, yielding a compromise between the H$_2$and H$_{\infty}$ filter designs. This filter design problems we formulated in a convex optimization framework using linear matrix inequalities. A numerical example is presented.

  • PDF

고정 구조를 가지는$H_\infty$ 전력계통 안정화 장치 설계 (Design of a Fixed-Structure H$_{\infty}$ Power System Stabilizer)

  • 김석주;이종무;권순만;문영현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권12호
    • /
    • pp.655-660
    • /
    • 2004
  • This paper deals with the design of a fixed-structure $H_\infty$ power system stabilizer (PSS) by using an iterative linear matrix inequality (LMI) method. The fixed-structure $H_\infty$ controller is represented in terms of LMIs with a rank condition. To solve the non-convex rank-constrained LMI problem, a linear penalty function is incorporated into the objective function so that minimizing the penalized objective function subject to LMIs amounts to a convex optimization problem. With an increasing sequence of the penalty parameter, the solution of the penalized optimization problem moves towards the feasible region of the original non-convex problem. The proposed algorithm is, therefore, convergent. Numerical experiments show the practical applicability of the proposed algorithm.

퍼지 기저함수에 종속적인 Lyapunov 함수를 이용한 T-S 퍼지 시스템의 H∞ 제어 (H∞ Control of T-S Fuzzy Systems Using a Fuzzy Basis- Function-Dependent Lyapunov Function)

  • 최현철;좌동경;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.615-623
    • /
    • 2008
  • This paper proposes an $H_{\infty}$ controller design method for Takagi-Sugeno (T-S) fuzzy systems using a fuzzy basis-function-dependent Lyapunov function. Sufficient conditions for the guaranteed $H_{\infty}$ performance of the T-S fuzzy control system are given in terms of linear matrix inequalities (LMIs). These LMI conditions are further used for a convex optimization problem in which the $H_{\infty}-norm$ of the closed-loop system is to be minimized. To facilitate the basis-function-dependent Lyapunov function approach and thus improve the closed-loop system performance, additional decision variables are introduced in the optimization problem, which provide an additional degree-of-freedom and thus can enlarge the solution space of the problem. Numerical examples show the effectiveness of the proposed method.

개선된 보간 알고리즘을 이용한 $H^{\infty}$-최적화 ($H^{\infty}$-optimization using the modified interpolation algorithm)

  • 이태형;윤한오;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.46-51
    • /
    • 1991
  • An algorithm of finding a solution to an $H^{\infty}$-minimization problem is proposed, and the solution is obtained explicity in terms of closed-form. We construct an optimal controller subject to the interpolation constraints such that $H^{\infty}$-norm and the minimized value of transfer function matrix are equal.l.

  • PDF