A H^{∞} -OPTIMIZATION PROBLEM

AN-HYUN KIM AND EUN-YOUNG KWON

Abstract. In this note, we give a solution of a H^{∞} -optimization problem.

Let $L^2(\mathbb{T})$ be the set of all square-integrable measurable functions on the unit circle $\mathbb{T} \equiv \partial \mathbb{D}$ in the complex plane and $H^2 \equiv H^2(\mathbb{T})$ be the corresponding Hardy space. Write $H^\infty(\mathbb{T}) := L^\infty(\mathbb{T}) \cap H^2(\mathbb{T})$. The H^∞ -optimization problems naturally arise in several fields of mathematics for instance, the robust control theory (cf. [FF]). In particular, the hyponormality of Toeplitz operators with bounded type symbols (i.e., quotients of two bounded analytic functions) has a deep connection with the following H^∞ -optimization problem:

 H^{∞} -optimization problem. Let $k_0 \in L^{\infty}(\mathbb{T})$ and θ a fixed inner function in $H^{\infty}(\mathbb{T})$. Find μ where

$$\mu = \operatorname{dist}(k_0, \theta H^{\infty}) \equiv \inf_{h \in H^{\infty}} ||k_0 - \theta h||_{\infty}.$$

If P denotes the orthogonal projection from L^2 to H^2 , then for every

bounded measurable function $\phi \in L^{\infty}$, the Toeplitz operator T_{ϕ} and the Hankel operator H_{ϕ} on H^2 are defined by

$$T_{\phi}f := P(\phi f)$$
 and $H_{\phi}(f) = J(I - P)(\phi f)$ for all $f \in H^2$,

where $J: (H^2)^{\perp} \to H^2$ is given by $Jz^{-n} = z^{n-1}$ for $n \geq 1$. If $k_0 \in H^{\infty}$ and θ is an inner function then by Nehari's Theorem [Ne], we have

dist
$$(k_0, \ \theta H^{\infty}) = \inf_{f \in H^{\infty}} ||\bar{\theta}k_0 + f||_{\infty} = ||H_{\bar{\theta}k_0}||.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B20, 47B35

Received October 07, 2010. Accepted December 01, 2010.

Key words and phrases: H^{∞} -optimization problem, Blaschke product, Toeplitz operators, Hankel operators, hyponormal.

This research is financially supported by Changwon National University in 2010.

It was also known that (see [GS, Theorem 8])

$$T_{\phi}$$
 is hyponormal $\iff ||H_{\bar{\theta}k_0}|| \leq 1$.

Recently, W.Y. Lee [Le, Lemma 4] has given a solution of a H^∞ -optimization problem: If b and q are finite Blaschke products of the form

$$e^{i\theta} \prod_{j=1}^{n} \frac{z - \alpha_j}{1 - \overline{\alpha_j} z} \quad (\alpha_j \in \mathbb{D}),$$

then

$$deg(b) \ge deg(q) \iff dist(b, qH^{\infty}) < 1.$$

Its proof relies heavily upon the spectral theory of Toeplitz operators. The purpose of this note is to give a direct proof of a slightly extended version without using the spectral theory of Toeplitz operators.

Our main theorem now follows:

Theorem 1. If b is a (possibly infinite) Blaschke product and q is a finite Blaschke product, then

$$deg(b) \ge deg(q) \iff dist(b, qH^{\infty}) < 1.$$

Proof. We first claim that

(1)
$$\deg(b) \ge \deg(q) \implies \operatorname{dist}(b, qH^{\infty}) < 1.$$

Towards (1), we suppose $\deg(b) =: m \ge n := \deg(q) \ (m \in \mathbb{N} \cup \{\infty\})$ and $n \in \mathbb{N}$. So we can write

$$b(z) = e^{i\theta} \prod_{j=1}^{m} \frac{z - \alpha_j}{1 - \overline{\alpha_j} z}$$
 and $q(z) = e^{i\omega} \prod_{j=1}^{n} \frac{z - \beta_j}{1 - \overline{\beta_j} z}$.

If m > n, define

$$h(z) := \prod_{j=n+1}^{m} \frac{z - \alpha_j}{1 - \overline{\alpha_j}z} \prod_{j=1}^{n} \left(\frac{1 - \overline{\beta_j}z}{1 - \overline{\alpha_j}z} \right)^2$$

and if instead $m = n < \infty$, define

$$h(z) := \prod_{j=1}^{n} \left(\frac{1 - \overline{\beta_j} z}{1 - \overline{\alpha_j} z} \right)^2.$$

Then we have that if c > 0 then for all $z \in \mathbb{T}$,

$$|b(z) - q(z)ce^{i(\theta - \omega)}h(z)| = \left| \prod_{j=1}^{n} \frac{z - \alpha_{j}}{1 - \overline{\alpha_{j}}z} - c \prod_{j=1}^{n} \frac{z - \beta_{j}}{1 - \overline{\beta_{j}}z} \prod_{j=1}^{n} \left(\frac{1 - \overline{\beta_{j}}z}{1 - \overline{\alpha_{j}}z} \right)^{2} \right|$$

$$= \left| 1 - c \prod_{j=1}^{n} \left(\frac{z - \beta_{j}}{z - \alpha_{j}} \cdot \frac{1 - \overline{\beta_{j}}z}{1 - \overline{\alpha_{j}}z} \right) \right|$$

$$= \left| 1 - c \prod_{j=1}^{n} \left| \frac{1 - \overline{\beta_{j}}z}{1 - \overline{\alpha_{j}}z} \right|^{2} \right|.$$

But since

$$\frac{\prod_{j=1}^{n} (1 - |\beta_j|)^2}{2^{2n}} < \prod_{j=1}^{n} \left| \frac{1 - \overline{\beta_j} z}{1 - \overline{\alpha_j} z} \right|^2 < \frac{2^{2n}}{\prod_{j=1}^{n} (1 - |\alpha_j|)^2} \quad \text{on } \mathbb{T}$$

it follows that if we choose

$$c = \frac{2^{2n}}{\prod_{j=1}^{n} (1 - |\alpha_j|)^2}$$

then $|b(z) - q(z)ce^{i(\theta-\omega)}h(z)| < 1$, which implies that

$$\inf_{f \in H^{\infty}} ||b - qf||_{\infty} < 1$$

because $f \equiv ce^{i(\theta-\omega)}h(z) \in H^{\infty}$. This proves the assertion (1). To complete the proof we suppose $\deg(b) < \deg(q)$. Assume to the contrary that $\operatorname{dist}(b,qH^{\infty}) < 1$. Then there exists a function $f \in H^{\infty}$ such that $||b-qf||_{\infty} < 1$, and hence

$$|b(z) - q(z)f(z)| < 1 = |b(z)|$$
 on T.

By Rouché's theorem,

$$\#(\text{zeros of } b \text{ in } \mathbb{D}) = \#(\text{zeros of } qf \text{ in } \mathbb{D}),$$

which contradicts the assumption that deg(b) < deg(q). This completes the proof.

A bounded linear operator A on a Hilbert space \mathcal{H} is said to be hyponormal if its selfcommutator $[A^*, A] = A^*A - AA^*$ is positive semi-definite. The problem of determining which symbols induce hyponormal

Toeplitz operators was completely solved by C. Cowen [Co] in 1988: If $\phi \in L^{\infty}(\mathbb{T})$ and

$$\mathcal{E}(\phi) := \{k \in H^{\infty}(\mathbb{T}) : ||k||_{\infty} \le 1 \text{ and } \phi - k\overline{\phi} \in H^{\infty}(\mathbb{T})\},$$

then T_{ϕ} is hyponormal if and only if the set $\mathcal{E}(\phi)$ is nonempty. This is called the *Cowen's theorem*. Recently, W.Y. Lee [Le] give a complete description on the Cowen set $\mathcal{E}(\phi)$ if the selfcommutator $[T_{\phi}^*, T_{\phi}]$ is of finite rank, in which a H^{∞} -optimization problem like Theorem 1 is employed. However, if the selfcommutator $[T_{\phi}^*, T_{\phi}]$ is of infinite rank, then a description on the set $\mathcal{E}(\phi)$ is not definite.

Example 2. If ϕ is of bounded type such that the rank of the selfcommutator $[T_{\phi}^*, T_{\phi}]$ is of infinite then $\mathcal{E}(\phi)$ may contain either a unique function or infinitely many functions in H^{∞} .

Proof. Suppose

$$\phi(z) = \frac{1}{2}\overline{z} + zb$$
 (b is an infinite Blaschke product).

Clearly, ϕ is of bounded type. Since $[T_{\phi}^*, T_{\phi}] = H_{\overline{\phi}}^* H_{\overline{\phi}} - H_{\phi}^* H_{\phi}$, it follows that

$$[T_{\phi}^*, T_{\phi}] = H_{\overline{zb}}^* H_{\overline{zb}} - \frac{1}{4} H_{\overline{z}}^* H_{\overline{z}},$$

and hence rank $[T_{\phi}^*, T_{\phi}] = \deg(zb) = \infty$. Observe that if $|c| \leq \frac{1}{2}$ then each function $(\frac{1}{2} + cz)b$ is contained in $\mathcal{E}(\phi)$, so that $\mathcal{E}(\phi)$ contains infinitely many functions. If instead

$$\psi(z) = \overline{z} + zb$$
 (b is an infinite Blaschke product),

then by the same argument as above, $[T_{\psi}^*, T_{\psi}]$ has infinite rank. Evidently, $\mathcal{E}(\psi)$ contains the function b. We now claim that $\mathcal{E}(\psi)$ contains exactly one element. Indeed, if k is in $\mathcal{E}(\psi)$ then $\overline{z} - k \overline{zb} \in H^{\infty}$ and so $k \overline{b} \in 1 + zH^{\infty}$ and $||k\overline{b}||_{\infty} \leq 1$, which forces k = b.

References

- [Co] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988), 809–812.
- [FF] C. Foias and A. Frazo, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Boston, 1993.
- [GS] C. Gu and J.E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319(2001), 553–572.

- [Le] W. Y. Lee, Cowen sets for Toeplitz operators with finite rank selfcommutators, J. Operator Theory **54(2)**(2005), 301-307.
- [Ne] Z. Nehari, On bounded bilinear forms, Ann. of Math. 65(1957), 153-162.

Department of Mathematics, Changwon National University, Changwon 641–773, Korea E-mail: ahkim@changwon.ac.kr

Department of Mathematics, Changwon National University, Changwon 641–773, Korea *E-mail*: key3506@changwon.ac.kr