• Title/Summary/Keyword: $GH_3$ cell

Search Result 58, Processing Time 0.029 seconds

Evaluation of Sleep Comfort for Indoor Thermal Environment based on the Physiological Signal Analysis (생리신호 분석을 이용한 실내온열환경에서의 수면 쾌적성 평가)

  • 이낙범;임재중;금종수;이구형;최호선
    • Science of Emotion and Sensibility
    • /
    • v.3 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • 문명의 발달과 함께 수면부족으로 인한 여러 가지 스트레스와 질환이 증가하게 되어 최근 수면연구에 대한 관심이 증가하고 있다. 본 연구는 다양한 온열환경 조건에서의 쾌적한 수면을 위한 온열환경을 제시하기 위해, 5명의 여성 피험자를 대상으로 22$^{\circ}C$, 26$^{\circ}C$, 3$0^{\circ}C$의 일정온도 조건과 $25^{\circ}C$에서 1시간 후와 2시간 후에 각각 1, 2$^{\circ}C$를 상승시켜주는 변동온도 조건하에서 수면생리신호를 측정하였다. 그리고, 수면단계 평가를 이용하여 총 수면시간, 깊은 수면의 비율, 그리고 최초 수면시작 시간에서 최초의 서파 수면이 나타나기까지의 지연시간 등의 수면효율을 평가하였다. 그 결과, 일정온도 조건에서는 26$^{\circ}C$에서 총 수면시간(466.7$\pm$10.25분)과 깊은 수면의 비율(33.1$\pm$4.95%)은 타 조건에 비해 높게 나타났고, 최초 서파수면까지의 지연시간(9.8$\pm$3.33분)은 타 조건에 비해 낮게 나타나 쾌적한 수면을 위한 가장 적절한 온열조건임을 관찰할 수 있었다. 그리고 변동온도 조건에서는 4가지 온열조건간에는 큰 차이가 나타나지 않았지만, 모든 조건에서 일정온도 조건보다는 좋은 결과를 나타내었다. 또한 수면 중 신체 움직임과 설문 분석에서도 동일한 결과를 보였다. 본 연구를 통해, 수면생리신호를 이용한 수면 쾌적성 분석은 수면의 질적인 상태를 관찰하는데 매우 적합한 파라메터를 도출할 수 있으며, 여러 가지 수면환경 조건을 평가하는데 매우 유용한 지표가 될 수 있음을 보였다.e results suggest that hCG treatment at 7 days after insemination could be used to increase the pregnancy rate of embryo transfer, and transfer, and only the recipients with PUN concentration of <12 mg/dl were influenced by treatment with hCG./TEX>이었으며, 이는 화성 기원을 지시한다.sucrose를 이용한 2단계 희석이 수정란의 생존성을 향상시키는 것으로 나타났다. 또한 발육 단계별 생존성에 있어서는 발육이 진전된 확장배 반포 시에 동결하는 것이 배반포기에 동결하는 것 보다 유리한 것으로 나타났다.ody를 사용하여 flow cytometery해석을 실시하는 한편 125I-hGH binding assay에 의하여 hGH binding activity를 측정하였다. 최종적으로 GH signal transduction의 target genedf으로 알려져 있는 serine protease inhibitor 2.1(Spi 2.1) gene의 promotor activity를 검토한 결과 hGHR을 transfect한 CHO Cell에 있어서 hGH의 농도에 의존적으로 증가되었다. 따라서 본 실험에서 cloning한 cDNA hGHR는 native hGHR와 같은 기능을 가지는 것으로 판명되었다.것으로 판명되었다..ments of that period left both in Japan and Korea. "Hyojedo" in Korea is supposed to have been influenced by the letter design. Asite- is also considered to

  • PDF

Effects of Regular Exercise and L-Arginine Intake on Abdominal Fat, GH/IGF-1 Axis, and Circulating Inflammatory Markers in the High Fat Diet-Induced Obese Aged Rat (규칙적인 운동과 L-arginine의 섭취가 고지방식이 유도 비만 노화생쥐의 복부지방량, GH/IGF-1 axis 및 혈관염증지표에 미치는 영향)

  • Park, Sok;Sung, Ki-Woon;Lee, Jin;Lee, Cheon-Ho;Lee, Young-Jun;Yoo, Young-June;Park, Kyoung-Shil;Min, Byung-Jin;Shin, Yong-Sub;Kim, Jung-Suk;Jung, Hun
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.516-523
    • /
    • 2012
  • The purpose of this study was to investigate the effect of exercise and/or L-arginine on abdominal fat, IGF-1 on GH/IGF-1 axis, fibrinogen, and PAI-1 in aged and obese rats. Male Sprague-Dawley rats were treated with a D-galactose aging inducing agent (50 mg/kg) given intraperitoneally for 12 weeks. Thirty-two male Sprague-Dawley rats were treated and divided into four groups: aging-high fat diet group (AG+HF), AG+HF with L-arginine intake group (AG+LA), AG+HF with exercise group (AG+EX), and AG+EX with L-arginine intake group (AG+LA+EX). The experimental rats underwent treadmill training (60 min/day, 6 days/week at 0% gradient) for 12 weeks. L-arginine was given orally (150 mg/kg/day) for 12 weeks. After the experiment, blood was collected from the left ventricle and abdominal fat was extracted. The results showed that GH was significantly increased in AG+EX and AG+AL+EX. IGF-1 was significantly increased in both the AG+AL+EX and AG+EX group ($p$<0.05), while fibrinogen and PAI-1 were not significantly different among the groups. Abdominal fat was significantly decreased in the AG+LA, AG+EX, and AG+LA+EX groups ($p$<0.05) compared with the AG+HF group. In conclusion, this study suggests that exercise alone or L-arginine alone or a combination not only increases the GH and IGF-1 concentration, but also decreases the abdominal fat mass.

Isolation and characterization of Auxin/indole-3-acetic acid 1 (Aux/IAA1) gene from poplar (Populus alba × P. glandulosa) (현사시나무에서 Auxin/indole-3-acetic acid 1 (Aux/IAA1) 유전자 분리 및 발현 특성 구명)

  • Bae, Eun-Kyung;Choi, Young-Im;Lee, Hyoshin;Choi, Ji Won
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.180-188
    • /
    • 2019
  • Auxin plays a crucial regulatory role in plant growth and development processes. Three major classes of auxin-responsive transcription factors controlled by the Auxin/indole-3-acetic acid (Aux/IAA), Gretchen Hagen 3 (GH3), and small auxin up RNA (SAUR) genes regulate auxin signaling. Aux/IAA, in particular, encodes short-lived nuclear proteins that accumulate rapidly in response to auxin signaling. In this study, we isolated a PagAux/IAA1 gene from poplar (Populus alba ${\times}$ P. glandulosa) and investigated its expression characteristics. The PagAux/IAA1 cDNA codes for putative 200 amino acids polypeptide containing four conserved domains and two nuclear localization signals (NLSs). Utilizing Southern blot analysis, we confirmed that a single copy of the PagAux/IAA1 gene was present in the poplar genome. The expression of this gene is specific to leaves and flowers of the poplar. PagAux/IAA1 expressed in the early exponential growth phase of cell-cultured in suspension. PagAux/IAA1 expression level reduced in drought and salt stress conditions, and the presence of plant hormones such as abscisic acid. However, expression enhanced in cold stress, cambial cell division, and presence of plant hormones such as gibberellic acid and jasmonic acid. Thus, these results suggest that PagAux/IAA1 participates in cold stress response as well as developmental processes in the poplar.

Transmission and Death Rates in Transgenic Mice Containing Growth Hormone Receptor Gene (성장호르몬수용체 유전자를 지닌 형질전환생쥐의 세대전달율 및 치사율)

  • Kim, H.J.;Jin, D.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.85-90
    • /
    • 2001
  • To study the signaling effect of growth hormone (GH) in vivo on animal physiology, transgenic mice containing GH Receptor (GHR) gene fused to metallothionein promoter were produced by DNA microinjection into one-cell stage embryos. Three founder mice were produced with transgenic mice with approximately 4~6 copies of GHR genes and transgene was transmitted into the progeny. The founder mice were mated with normal mice to produce F$_1$ mice, and intergation and transmission of transgene were checked by polymerase chain reaction and Southern blot methods. Transmission rate of GHR transgenic mice were 20~50% in F$_1$ generation and 50% in F$_2$ generation which means that some founder mice were mosaic and transgene in F$_1$ mice was transmitted to F$_2$ progeny with Mendelian ratio. Death rate of GHR transgenic mice after birth was about 10~30% in F$_1$ and F$_2$ progenies indicating that GHR gene may affect death of transgnenic progeny.

  • PDF

Effects of Eucommiae Cortex on Osteoblast-like Cell Proliferation and Osteoclast Inhibition

  • Ha, Hyek-Yung;Ho, Jinn-Yung;Shin, Sun-Mi;Kim, Hye-Jin;Koo, Sung-Ja;Kim, In-Ho;Kim, Chung-Sook
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.929-936
    • /
    • 2003
  • Methanol extract (MeOH), n-hexane (Hx), chloroform ($CHCl_3$), ethyl acetate (EA), butanol (BuOH) and aqueous ($H_2O$) fractions of Eucommiae Cortex including geniposidic acid (GA), geniposide (GP) and aucubin (AU) were tested for their therapeutic efficacy on osteoporosis. The contents of GA, GP and AU in the cortex and leaf of Eucommia ulmoides Oliver were quantified by HPLC. The effect of Eucommiae Cortex on the induction of growth hormone (GH) release was studied by using rat pituitary cells. The proliferation of osteoblast-like cells increased by herbal extracts was assayed using a tetrazolium (MTT), alkaline phosphatase (ALP) activity, and [$^3H$]-proline incorporation assays. The inhibition of osteoclast was studied by using the coculture of mouse bone marrow cells and ST-2 cells. As a result, the GA, GP and AU were present in the cortex more than in the leaf of E. ulmoides Oliver. The MeOH (1mg/mL), Hx, $CHCl_3$ and EA fractions (each 20 $\mu$ g/mL) had potent induction of GH release. The $CHCl_3$ exhibited the potent proliferation of osteoblasts. The AU, GP and GA were increased proliferation of osteoblasts. In addition, GA ($IC_{50}: 4.43{\times}10^{-7}$M), AU and GP were significantly inhibited proliferation of osteoclast. In summary, it is thought that the components in a part of the fractions of Eucommiae Cortex participate in each step of mechanism for activating osteoblast to facilitate osteogenesis, and suppress osteoclast activity to inhibit osteolysis.

Insulin-like growth factor가 소장 점막 세포 증식에 미치는 영향

  • 윤정한
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 1995.11b
    • /
    • pp.11-34
    • /
    • 1995
  • Growth hormone (GH) plays a key role in regulating postnatal growth and can stimulate growth of animals by acting directly on specific receptors on the plasma membrane of tissues or indirectly through stimulating insulin-like growth factor (IGF)-I synthesis and secretion by the liver and other tissues. IGF-I and IGF-Ⅱ are polypeptides with structural similarity with proinsulin that stimulate cell proliferation by endocrine, paracrine and autocrine mechanisms. The initial event in the metabolic action of IGFs on target cells appears to be their binding to specific receptors on the plasma membrane. Current evidence indicates that the mitogenic actions of both IGFs are mediated primarily by binding to the type I IGF receptors, and that IGF action is also mediated by interactions with IGF-binding proteins (IGFBPs). Six distinct IGFBPs have been identified that are characterized by cell-specific interaction, transcriptional and post-translational regulation by many different effectors, and the ability to either potentiate or inhibit IGF actions. Nutritional deficiencies can have their devastating consequence during growth. Although IGF-I is the major mediator of GH's action on somatic growth, nutritional status of an organism is a critical regulator of IGF-I and IGFBPs. Various nutrient deficiencies result in decreased serum IGF-I levels and altered IGFBP levels, but the blood levels of GH are generally unchanged or elevated in malnutrition. Effects of protein, energy, vitamin C and D, and zinc on serum IGF and IGFBP levels and tissue mRNA levels were reviewed in the text. Multiple factors are involved in the regulation of intestinal epithelial cell growth and differentiation. Among these factors the nutritional status of individuals is the most important. The intestinal epithelium is an important site for mitogenic action of the IGFs in vivo, with exogenous IGF-I stimulating mucosal hyperplasia. Therefore, the IGF system appears to provide and important mechanism linking nutrition and the proliferation of intestinal epithelial cells. In order to study the detailed mechanisms by which intestinal mucosa is regulated, we have utilized IEC-6 cells, an intestinal epithelial cell line and Caco-2 cells, a human colon adenocarcinoma cell line. Like intestinal crypt cells analyzed in vivo or freshly isolated intestinal epithelial cells, IEC-6 cells and Caco-2 cells possess abundant quatities of both type Ⅰ and type Ⅱ IGF receptors. Exogenous IGFs stimulate, whereas addition of IGFBP-2 inhibits IEC-6 cell proliferation. To investigate whether endogenously secreted IGFBP-2 inhibit proliferation, IEC-6 cells were transfected with a full-length rat IGFBP-2 cDNA anti-sense expression construct. IEC-6 cells transfected with anti-sense IGFBP-2 protein in medium. These cells grew at a rate faster than the control cells indicating that endogenous IGFBP-2 inhibits proliferation of IEC-6 cells, probably by sequestering IGFs. IEC-6 cells express many characteristics of enterocyte, but do not undergo differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation. On the other hand, Caco-2 cells undergo a spontaneous enterocyte differentiation after reaching confluency. We have demonstrated that Caco-2 cells produce IGF-Ⅱ, IGFBP-2, IGFBP-3, and an as yet unidentified 31,000 Mr IGFBP, and that both mRNA and peptide secretion of IGFBP-2 and IGFBP-3 increased, but IGFBP-4 mRNA and protein secretion decreased after the cells reached confluency. These changes occurred in parallel to and were coincident with differentiation of the cells, as measured by expression of sucrase-isomaltase. In addition, Caco-2 cell clones forced to overexpress IGFBP-4 by transfection with a rat IGFBP-4 cDNA construct exhibited a significantly slower growth rate under serum-free conditions and had increased expression of sucrase-isomaltase compared with vector control cells. These results indicate that IGFBP-4 inhibits proliferation and stimulates differentiation of Caco-2 cells, probably by inhibiting the mitogenic actions of IGFs.

  • PDF

The treatment effect of novel hGHRH homodimer to male infertility hamster

  • Zhang, Xu-Dong;Guo, Xiao-Yuan;Tang, Jing-Xuan;Yue, Lin-Na;Zhang, Juan-Hui;Liu, Tao;Dong, Yu-Xia;Tang, Song-Shan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Extra-hypothalamic growth hormone-releasing hormone (GHRH) plays an important role in reproduction. To study the treatment effect of Grin (a novel hGHRH homodimer), the infertility models of 85 male Chinese hamsters were established by intraperitoneally injecting 20 mg/kg of cyclophosphamide once in a week for 5 weeks and the treatment with Grin or human menopausal gonadotropin (hMG) as positive control was evaluated by performing a 3-week mating experiment. 2-8 mg/kg of Grin and 200 U/kg of hMG showed similar effect and different pathological characteristics. Compared to the single cyclophosphamide group (0%), the pregnancy rates (H-, M-, L-Grin 26.7, 30.8, 31.3%, and hMG 31.3%) showed significant difference, but there was no difference between the hMG and Grin groups. The single cyclophosphamide group presented loose tubules with pathologic vacuoles and significant TUNEL positive cells. Grin induced less weight of body or testis, compactly aligned tubules with little intra-lumens, whereas hMG caused more weight of body or testis, enlarging tubules with annular clearance. Grin presented a dose-dependent manner or cell differentiation-dependentincrease in testicular GHRH receptor, and did not impact the levels of blood and testicular GH, testosterone. Grin promotes fertility by proliferating and differentiating primitive cells through up-regulating testicular GHRH receptor without triggering GH secretion, which might solve the etiology of oligoasthenozoospermia.

Auxin Induced Expression of Expansin is Alered in a New Aux1 Allele that Shows Severe Defect in Gravitropic Response

  • Jeong, Hae-Jun;Kwon, Ye-Rim;Oh, Jee-Eun;Kim, Ki-Deok;Lee, Sung-Joon;Hong, Suk-Whan;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.148-153
    • /
    • 2006
  • While the underlying molecular mechanism remains to be elucidated, recent studies suggest that polar auxin transport is a key controlling factor in triggering differential growth responses to gravity. Identification of regulatory components in auxin-mediated differential cell expansion would improve our understanding of the gravitropic response. In this study, we identify a mutant designated aux1-like(later changed to aux1), an allele of the aux1 mutant that exhibits a severely disrupted root gravitropic response, but no defects in developmental processes. In Arabidopsis, AUX1 encodes an auxin influx carrier. Since in-depth characterization of the gravitropic response caused by mutations in this gene has been performed previously, we focused on identifying the downstream genes that were differentially expressed compared to wild-type plants. Consistent with the mutant phenotype, the transcription of the auxin-responsive genes IAA17 and GH3 were altered in aux1 plants treated with IAA, 2, 4-D and NAA. In addition, we identified two expansin genes EXP10 and EXPL3 that exhibited different expression in wild-type and mutant plants.

Changes in Serum IGF-I and Spermatogenesis Analysed by Flow Cytometry in Growing Male Rabbit (성장 중인 수토끼에서 혈청 IGF-I 수준과 Flow Cytometry 측정에 의한 정자 형성의 변화)

  • Lee J. H.;Kim C. K.;Chang Y. M.;Ryu J. W.;Park M. Y.;Chung Y. C.;Pang M. G.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.163-168
    • /
    • 2005
  • The aim of this study was to investigate the changes in insulin-like growth factor-I (IGF-I) and growth hormone (GH) in serum, the quantitation of spermato-genesis and the comparable relationships among these measurements during pubertal period in New Zealand White male rabbits. To investigate the age-related testicular changes in DNA contents of spermatogenic cells, the fine-needle testicular biopsies from males aged 10 to 28 wks were evaluated by flow cytometry(FCM). Body weight increased significantly between the ages of 12 and 20 wks (P<0.05) and reached 3.4 kg at 28 wks of age. The highest serum IGF-I level (451.3ng/mL) was observed at 20wks of age (P<0.05) and thereafter remained stable at low levels. Serum GH level at 18 wks of age was 183.3 pg/mL which was significantly higher compared to the other ages (P<0.05), and the rising time in serum GH tend to be somewhat earlier than that of IGF-I. The relative percentage of It-cells in testicular cell compartments was $48.2\%$ at the age of 18 wks which significantly increased than those of 16-wk-old (P<0.05) and thereafter increased with the advance of age to $68\%$. The percentage of 2C-cells in testis was $26.8\%$ at 18 wks of age which was significantly lower than $54.3\%$ at 16 wks old (P<0.05). The percentage of 4C-cells was constantly maintained $2\~6\%$ except the $9.9\%$ at 18 wks of age. In conclusion, the results suggest that the puberty onset occurred at about the 18 wks of age and that the IGF-I and GH in serum during the pubertal period showed the age/growth-specific changes and these changes might be related to the spermatogenesis. The DNA FCM combined with fine-needle testicular biopsy could offer a very sensitive method to monitor the quantitative spermatogenic events related to the puberty onset.

Role of Calcium Influx in mediating the TRH-induced c-fos Gene Expression (갑상선자극 분비 호르몬에 의해 유도되는 c-fos 유전자 발현에서 Ca2+의 역할에 관한 연구)

  • Seung Kirl Ahn;Don
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.487-495
    • /
    • 1993
  • TRH (Thvrotropin-Releasing Hormone) known to regulate the transcription of the TSH (Thyroid-Stimulating Hormones gene in pituitary cells, but little is understood about the mechanism(sl involved. re present study was attempted to elucidate the role of Ca2+ movement through the voltage-gated channels in the regulation of TSH gene transcription. The c-fos is one of immediate early genes and used as model system for the investigation of signaling pathwavs involved in various stimuli. The changes of c-fos mRNA levels were determined after treatment of various agents using Northern and slot hybridization analysis. The c-fos mRNA was rapidly and transiently induced by TRH (about 3-fold) in GH3 cells and this induction was repressed by calcium chelating agent (EGTA), calcium channel blocker (verapamil) anti protein kinase C inhibitor (aminoacridine). The abilities of forskolin (adenvlate cvclase activators, PMA (protein kinase C activator), and A23187 (calcium ionophore) to affect c-ios gene transcription, either alone or in combination with TRH were tested in the same cells. All of them significantly increased the level of c-fos mRUA. However, no additive relationship was observed in all combined treatments except forskolin. These results suggest that TRH action on the c-fos gene activation is mediated by calcium influx as well as through protein kinase C.

  • PDF