DOI QR코드

DOI QR Code

Isolation and characterization of Auxin/indole-3-acetic acid 1 (Aux/IAA1) gene from poplar (Populus alba × P. glandulosa)

현사시나무에서 Auxin/indole-3-acetic acid 1 (Aux/IAA1) 유전자 분리 및 발현 특성 구명

  • Bae, Eun-Kyung (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Choi, Young-Im (Forest Biotechnology Division, National Institute of Forest Science) ;
  • Lee, Hyoshin (Forest Bioinformation Division, National Institute of Forest Science) ;
  • Choi, Ji Won (Forest Biotechnology Division, National Institute of Forest Science)
  • 배은경 (국립산림과학원 산림생명공학연구과) ;
  • 최영임 (국립산림과학원 산림생명공학연구과) ;
  • 이효신 (국립산림과학원 산림생명정보연구과) ;
  • 최지원 (국립산림과학원 산림생명공학연구과)
  • Received : 2019.08.10
  • Accepted : 2019.09.09
  • Published : 2019.09.30

Abstract

Auxin plays a crucial regulatory role in plant growth and development processes. Three major classes of auxin-responsive transcription factors controlled by the Auxin/indole-3-acetic acid (Aux/IAA), Gretchen Hagen 3 (GH3), and small auxin up RNA (SAUR) genes regulate auxin signaling. Aux/IAA, in particular, encodes short-lived nuclear proteins that accumulate rapidly in response to auxin signaling. In this study, we isolated a PagAux/IAA1 gene from poplar (Populus alba ${\times}$ P. glandulosa) and investigated its expression characteristics. The PagAux/IAA1 cDNA codes for putative 200 amino acids polypeptide containing four conserved domains and two nuclear localization signals (NLSs). Utilizing Southern blot analysis, we confirmed that a single copy of the PagAux/IAA1 gene was present in the poplar genome. The expression of this gene is specific to leaves and flowers of the poplar. PagAux/IAA1 expressed in the early exponential growth phase of cell-cultured in suspension. PagAux/IAA1 expression level reduced in drought and salt stress conditions, and the presence of plant hormones such as abscisic acid. However, expression enhanced in cold stress, cambial cell division, and presence of plant hormones such as gibberellic acid and jasmonic acid. Thus, these results suggest that PagAux/IAA1 participates in cold stress response as well as developmental processes in the poplar.

옥신은 식물의 생장과 발달 과정에서 중요한 조절자로서 기능한다. 옥신 신호전달 과정은 3개의 주요 옥신 반응 전사인자인 Auxin/indole-3-acetic acid (Aux/IAA), Gretchen Hagen 3 (GH3), 그리고 small auxin up RNA (SAUR) 유전자에 의해 조절된다. 특히, Aux/IAA는 옥신 신호에 반응하여 빠르게 축적되는 수명이 짧은 핵 단백질이다. 이 실험에서 우리는 현사시 나무(Populus alba ${\times}$ P. glandulosa)로 부터 PagAux/IAA1 유전자를 분리하고 발현 특성을 분석하였다. PagAux/IAA1 cDNA는 4개의 보존된 도메인과 2개의 nuclear localization sequence (NLS)을 포함한 200개의 아미노산을 암호화하고 있다. Southern blot 분석으로 현사시나무 genome에 PagAux/IAA1 유전자가 single copy로 존재하는 것을 확인하였다. PagAux/IAA1 유전자는 잎과 꽃에서 특이적으로 발현되었다. 그리고 PagAux/IAA1 유전자는 현탁배양세포의 생장 과정에서 초기 지수생장기에 발현되었다. PagAux/IAA1 유전자의 발현을 분석한 결과, 건조와 염 스트레스 및 식물호르몬인 ABA 처리에 의해 발현이 감소된 반면 저온 스트레스, 형성층의 세포 분열 과정 그리고 식물호르몬인 GA와 JA 처리에서 발현이 증가하였다. 따라서 PagAux/IAA1 유전자가 현사시나무에서 저온 스트레스 반응뿐 아니라 생장 과정에 관여할 것으로 판단된다.

Keywords

References

  1. Abel S, Oeller PW, Theologis, A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326-330 https://doi.org/10.1073/pnas.91.1.326
  2. Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251(4):533-549 https://doi.org/10.1006/jmbi.1995.0454
  3. Ainley WM, Walker JC, Nagao RT, Key JL (1988) Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263(22):10658-10666 https://doi.org/10.1016/S0021-9258(18)38022-0
  4. Bae EK, Lee H, Lee JS, Noh EW (2009) Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42(7):439-443 https://doi.org/10.5483/BMBRep.2009.42.7.439
  5. Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18(2):298-305 https://doi.org/10.1093/bioinformatics/18.2.298
  6. Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52(3):499-511 https://doi.org/10.1111/j.1365-313X.2007.03250.x
  7. Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477-485 https://doi.org/10.1038/nchembio.926
  8. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156-159 https://doi.org/10.1006/abio.1987.9999
  9. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397 https://doi.org/10.3389/fpls.2013.00397
  10. Dreher KA, Brown J, Saw RE, Callis J (2006) The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell 18(3):699-714 https://doi.org/10.1105/tpc.105.039172
  11. Dharmasiri N, Dharmasiri S, Jones AM, Estelle M (2003) Auxin action in a cell-free system. Curr Biol 13(16):1418-1422 https://doi.org/10.1016/S0960-9822(03)00536-0
  12. Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RB, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50(4):557-573 https://doi.org/10.1111/j.1365-313X.2007.03077.x
  13. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29(2):153-168 https://doi.org/10.1046/j.0960-7412.2001.01201.x
  14. Goldfarb B, Lanz-Garcia C, Lian Z, Whetten R (2003) Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree physiol 23(17):1181-1192 https://doi.org/10.1093/treephys/23.17.1181
  15. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3-4):373-385 https://doi.org/10.1023/A:1015207114117
  16. Han X, Xu X, Fang DD, Zhang T, Guo W (2012) Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Gene 503(1):83-91 https://doi.org/10.1016/j.gene.2012.03.069
  17. Ishida T, Adachi S, Yoshimura M, Shimizu K., Umeda M, Sugimoto K. (2010) Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137(1):63-71 https://doi.org/10.1242/dev.035840
  18. Jung H, Lee DK, Choi YD, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304312
  19. Kalluri UC, Difazio SP, Brunner AM, Tuskan GA (2007) Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol 7:59. doi:10.1186/1471-2229-7-59
  20. Kang HJ, Mon HK, Park SY, Kim PG (2004) Anatomical characteristics of hyperhydric shoots occurring in in vitro culture of peace poplar. Kor J Plant Biotechnol 31(2):145-149 https://doi.org/10.5010/JPB.2004.31.2.145
  21. Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94(22):11786-11791 https://doi.org/10.1073/pnas.94.22.11786
  22. Lee H, Bae EK, Park SY, Sjodin A, Lee JS, Noh EW, Jansson S (2007) Growth-phase-dependent gene expression profiling of poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) suspension cells. Physiol Plant 131(4):599-613 https://doi.org/10.1111/j.1399-3054.2007.00987.x
  23. Lee H, Lee JS, Noh EW, Bae EK, Choi YI, Han MS (2005) Generation and analysis of expressed sequence tags from poplar (Populus $alba{\times}P$. tremula var. glandulosa) suspension cells. Plant Sci 169(6):1118-1124 https://doi.org/10.1016/j.plantsci.2005.07.013
  24. Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10(3):403-413 https://doi.org/10.1046/j.1365-313x.1996.10030403.x
  25. Liscum E, Reed J (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387-400 https://doi.org/10.1023/A:1015255030047
  26. Liu S, Hu Q, Luo S, Li A, Yang X, Wnag X, Wang S (2015) Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis. Front Plant Sci 6:388. doi:10.3389/fpls.2015.00388
  27. Luo J, Zhou JJ, Zhang JZ (2018) Aux/IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19(1):259. doi:10.3390/ijms19010259
  28. Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Pant J 31(6):675-685
  29. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008). Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843-855 https://doi.org/10.1105/tpc.107.055798
  31. Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106(52):22540-22545 https://doi.org/10.1073/pnas.0911967106
  32. Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13(10):2349-2360 https://doi.org/10.1105/tpc.010244
  33. Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6(9):420-425 https://doi.org/10.1016/S1360-1385(01)02042-8
  34. Reitz MU, Gifford ML, Schafer P (2015) Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. J Exp Bot 66(8):2187-2197 https://doi.org/10.1093/jxb/erv106
  35. Rogg LE, Bartel B (2001) Auxin signaling: derepression through regulated proteolysis. Dev Cell 1(5):595-604 https://doi.org/10.1016/S1534-5807(01)00077-6
  36. Sato A, Yamamoto KT (2008) Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133(2):397-405 https://doi.org/10.1111/j.1399-3054.2008.01055.x
  37. Shani E, Salehin M, Zhang Y, Sanchez SE, Doherty C, Wang R, Mangado CC, Song L, Tal I, Pisanty O, Ecker JR, Kay SA, Pruneda-Paz J, Estelle M (2017) Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr Biol 27(3):437-444 https://doi.org/10.1016/j.cub.2016.12.016
  38. Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21(12):3823-3838 https://doi.org/10.1105/tpc.109.069906
  39. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  40. Sigrist CJ, De Castro E, Langendijk-Genevaux PS, Le Saux V, Bairoch A, Hulo N (2005) ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics 21(21):4060-4066 https://doi.org/10.1093/bioinformatics/bti614
  41. Song Y, Wang L, Xiang L (2009a) Comprehensive expression profiling analysis OsIAA gene family in developmental processes and in response to phytohormone and stess treatements. Planta 229:577-591 https://doi.org/10.1007/s00425-008-0853-7
  42. Song Y, You J, Xiong L (2009b) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70(3):297-309 https://doi.org/10.1007/s11103-009-9474-1
  43. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98(3):503-517 https://doi.org/10.1016/S0022-2836(75)80083-0
  44. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21(5):1495-1511 https://doi.org/10.1105/tpc.108.064303
  45. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446(7136):640-645 https://doi.org/10.1038/nature05731
  46. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7(11):847-59. doi:10.1038/nrm2020
  47. Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 26(4):711-721 https://doi.org/10.1242/dev.126.4.711
  48. Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8(4):561-569 https://doi.org/10.1046/j.1365-313X.1995.8040561.x
  49. Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16(2):533-543 https://doi.org/10.1105/tpc.017384
  50. Ulmasov T, Hagen G, Guilfoyle TJ (1997a) ARF1, a transcription factor that binds to auxin response elements. Science 276(5320):1865-1868 https://doi.org/10.1126/science.276.5320.1865
  51. Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997b) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963-1971 https://doi.org/10.2307/3870557
  52. van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776-792 https://doi.org/10.1104/pp.106.079293
  53. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17(20):1784-1790 https://doi.org/10.1016/j.cub.2007.09.025
  54. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17(10):2676-2692 https://doi.org/10.1105/tpc.105.033415
  55. Wang S, Bai Y, Shen C, Wu Y, Zhang S, Jiang D, Guilfoyle TJ, Chen M, Qi Y (2010) Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct Integr Genomics 10(4):533-546 https://doi.org/10.1007/s10142-010-0174-3
  56. Weijers D, Benkova E, Jager KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jurgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24(10):1874-1885 https://doi.org/10.1038/sj.emboj.7600659
  57. Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23(6):2184-2195 https://doi.org/10.1105/tpc.111.086355
  58. Wu W, Liu Y, Wang Y, Li H, Liu J, Tan J, He J, Bai J, Ma H (2017) Evolution analysis of the Aux/IAA gene family in plants shows dual origins and variable nuclear localization signals. Int J Mol Sci 18(10):2107. doi:10.3390/ijms18102107
  59. Yamamoto KT, Mori H, Imaseki H (1992) cDNA cloning of indole-3-acetic acid-regulated Genes: Aux22 and SAUR from Mung Bean (Vigna radiata) hypocotyl tissue. Plant Cell Physiol 33(1):93-97
  60. Yu H, Soler M, San Clemente H, Mila I, Paiva JA, Myburg AA, Bouzayen M, Grima-Pettenati J, Gassan-Wang H (2015) Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. Plant Cell Physiol 56(4):700-714 https://doi.org/10.1093/pcp/pcu215
  61. Zhao Z, Li Y, Zhao S, Zhang J, Zhang H, Fu B, He F, Zhao M, Liu P (2018) Transcriptome analysis of gene expression patterns potentially associated with premature senescence in Nicotiana tabacum L. Molecules 23(11):2856. doi:10.3390/molecules231128526