• Title/Summary/Keyword: $GABA_A$

Search Result 535, Processing Time 0.023 seconds

Measurement and Assessment of Absolute Quantification from in Vitro Canine Brain Metabolites Using 500 MHz Proton Nuclear Magnetic Resonance Spectroscopy: Preliminary Results (개의 뇌 조직로부터 추출한 대사물질의 절대농도 측정 및 평가: 500 MHz 고자장 핵자기공명분광법을 이용한 예비연구결과)

  • Woo, Dong-Cheol;Bang, Eun-Jung;Choi, Chi-Bong;Lee, Sung-Ho;Kim, Sang-Soo;Rhim, Hyang-Shuk;Kim, Hwi-Yool;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.100-106
    • /
    • 2008
  • The purpose of this study was to confirm the exactitude of in vitro nuclear magnetic resonance spectroscopy(NMRS) and to complement the defect of in vivo NMRS. It has been difficult to understand the metabolism of a cerebellum using in vivo NMRS owing to the generated inhomogeneity of magnetic fields (B0 and B1 field) by the complexity of the cerebellum structure. Thus, this study tried to more exactly analyze the metabolism of a canine cerebellum using the cell extraction and high resolution NMRS. In order to conduct the absolute metabolic quantification in a canine cerebellum, the spectrum of our phantom included in various brain metabolites (i.e., NAA, Cr, Cho, Ins, Lac, GABA, Glu, Gln, Tau and Ala) was obtained. The canine cerebellum tissue was extracted using the methanol-chloroform water extraction (M/C extraction) and one group was filtered and the other group was not under extract processing. Finally, NMRS of a phantom solution and two extract solution (90% D2O) was progressed using a 500MHz (11.4 T) NMR machine. Filtering a solution of the tissue extract increased the signal to noise ratio (SNR). The metabolic concentrations of a canine cerebellum were more close to rat’s metabolic concentration than human’s metabolic concentration. The present study demonstrates the absolute quantification technique in vitro high resolution NMRS with tissue extraction as the method to accurately measure metabolite concentration.

  • PDF

Study on Sleeping Behaviors of The Combined-Preparation of Crude Drugs -on The $Well^{TM}$ Preparation- (복합한약제제의 수면에 대한 연구 -더웰 제제에 대하여-)

  • Pang, Jinye;Lee, Mi-Kyung;Seo, Seung-Young;Jeon, Hoon;Kim, Dae-Keun;Oh, Ki-Wan;Cho, Hyoung-Kwon;Eun, Jae-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.6
    • /
    • pp.996-999
    • /
    • 2011
  • This experiment was performed to investigate whether the combined-preparation of crude drugs (The $Well^{TM}$ Preparation, TW), has hypnotic effects and/or enhances pentobarbital-induced sleep behaviors. TW was mixed with water extracts of Ginseng Radix red, Germinated brown rice, cultured mountain ginseng, and 50% ethanol extracts of Longanae Arillus, Nelumbinis Folium and Chrysanthemi Flos. TW (100 mg/kg, p.o.) reduced sleep onset and prolonged sleep time induced by pentobarbital similar to muscimol (0.2 ${\mu}M$), a $GABA_A$ receptor agonist. Also, TW (2 ${\mu}g$/ml) and pentobarbital (2.5 ${\mu}M$) did not affect the chloride influx in primary cultured cerebellar granule cells, respectively, but the combined-treatment of TW (2 ${\mu}g$/ml) and pentobarbital (2.5 ${\mu}M$) increased the chloride influx onto the cells. In conclusion, TW augments pentobarbital-induced sleep behaviors; these effects may result from chloride channel activation.

The New Neurobiology of Depression (우울증의 새로운 신경생물학)

  • Kim, Yong Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.1
    • /
    • pp.3-19
    • /
    • 2001
  • Recent basic and clinical studies demonstrate a major role for neural plasticity in the etiology and treatment of depression and stress-related illness. The neural plasticity is reflected both in the birth of new cell in the adult brain(neurogenesis) and the death of genetically healthy cells(apoptosis) in the response to the individual's interaction with the environment. The neural plasticity includes adaptations of intracellular signal transduction pathway and gene expression, as well as alterations in neuronal morphology and cell survival. At the cellular level, repeated stress causes shortening and debranching of dendrite in the CA3 region of hippocampus and suppress neurogenesis of dentate gyrus granule neurons. At the molecular level, both form of structural remodeling appear to be mediated by glucocorticoid hormone working in concert with glutamate and N-methyl-D-aspartate(NMDA) receptor, along with transmitters such as serotonin and GABA-benzodiazepine system. In addition, the decreased expression and reduced level of brain-derived neurotrophic factor(BDNF) could contribute the atrophy and decreased function of stress-vulnerable hippocampal neurons. It is also suggested that atrophy and death of neurons in the hippocampus, as well as prefrontal cortex and possibly other regions, could contribute to the pathophysiology of depression. Antidepressant treatment could oppose these adverse cellular effects, which may be regarded as a loss of neural plasticity, by blocking or reversing the atrophy of hippocampal neurons and by increasing cell survival and function via up-regulation of cyclic adenosine monophosphate response element-binding proteins(CREB) and BDNF. In this article, the molecular and cellular mechanisms that underlie stress, depression, and action of antidepressant are precisely discussed.

  • PDF

Application of Functional Microbial Strains Isolated from Traditional Rice Wine in Korea (막걸리 유래 미생물의 활용을 위한 연구 동향)

  • Lee, Youngsuk;Seol, Jeongman;Jeong, Deokyeol;Kim, Soo Rin
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.229-235
    • /
    • 2016
  • Korea has a long history of brewing traditional rice wine using a authentic starter culture called nuruk, which contains natural microbial flora. Because rice wine is consumed fresh without filtration, its viable cells contribute to the biological activities of the wine. In numerous studies, microbial strains isolated from rice wine have been screened for their functionalities, which were mainly probiotic properties and antimicrobial activities. Indeed, some lactic acid bacteria (LAB) were confirmed to have strong probiotic activities as well as other health-promoting effects. Moreover, some of the isolated probiotic strains produced functional compounds, such as exopolysaccharides and γ-aminobutyric acid. For antimicrobial activities, some LAB and yeast strains were identified to produce bacteriocins and killer toxins, respectively, with significantly broad spectrum of antimicrobial activity. These functional strains originating from traditional rice wine and their metabolites can be used directly for the production of value-added food products.

5-Hydroxytryptamine Inhibits Glutamatergic Synaptic Transmission in Rat Corticostriatal Brain Slice

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Kim, Seong-Yun;Cho, Young-Jin;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.255-262
    • /
    • 2005
  • Striatum is involved in the control of movement and habitual memory. It receives glutamatergic input from wide area of the cerebral cortex as well as an extensive serotonergic (5-hydroxytryptamine, 5-HT) input from the raphe nuclei. In our study, the effects of 5-HT on synaptic transmission were studied in the rat corticostriatal brain slice using in vitro whole-cell recording technique. 5-HT inhibited the amplitude as well as frequency of spontaneous excitatory postsynaptic currents (sEPSC) significantly, and neither ${\gamma}-aminobutyric$ acid (GABA)A receptor antagonist bicuculline (BIC), nor $N-methyl-_{D}-aspartate$ (NMDA) receptor antagonist, $_{DL}-2-amino-5-phosphonovaleric$ acid (AP-V) could block the effect of 5-HT. In the presence non-NMDA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenxo[f] quinoxaline-7-sulfonamide (NBQX), the inhibitory effect of 5-HT was blocked. We also figured out that 5-HT change the channel kinetics of the sEPSC. There was a significant increase in the rise time during the 5-HT application. Our results suggest that 5-HT has an effect on both pre- and postsynaptic site with decreasing neurotransmitter release probability of glutamate and decreasing the sensitivity to glutamate by increasing the rise time of non-NMDA receptor mediated synaptic transmission in the corticostriatal synapses.

The Characteristics of Supramammillary Cells Projecting to the Hippocampus in Stress Response in the Rat

  • Choi, Woong-Ki;Wirtshafter, David;Park, Hyun-Jung;Lee, Mi-Sook;Her, Song;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • The hypothalamus-pituitary-adrenocortex (HPA) axis is the central mediator of the stress response. The supramammillary (SuM) region is relatively unique among the hypothalamic structures in that it sends a large, direct projection to the hippocampal formation. It has been shown that mild stress could activate the SuM cells that project to the hippocampus. However, the role of these cell populations in modulating the stress response is not known. The present study examined the effect of stress on different populations of SuM cells that project to the hippocampus by injecting the fluorescent retrograde tracer, fluorogold (FG), into the hippocampus and utilizing the immunohistochemistry of choline acetyltransferase (ChAT), corticotrophin releasing factor (CRF), serotonin (5-HT), glutamate decarboxylase (GAD), tyrosine hydroxylase (TH) and NADPH-d reactivity. Immobilization (IMO) stress (2 hr) produced an increase in the expression of ChAT- immunoreactivity, and tended to increase in CRF, 5-HT, GAD, TH-immunoreactivity and nitric oxide (NO)-reactivity in the SuM cells. Fifty-three percent of 5-HT, 31% of ChAT and 56% of CRF cells were double stained with retrograde cells from the hippocampus. By contrast, a few retrogradely labeled cells projecting to the hippocampus were immunoreactive for dopamine, ${\gamma}$-aminobutyric acid (GABA) and NO. These results suggest that the SuM region contains distinct cell populations that differentially respond to stress. In addition, the findings suggest that serotonergic, cholinergic and corticotropin releasing cells projecting to the hippocampus within the SuM nucleus may play an important role in modulating stress-related behaviors.

Animal Models of Demyelination and 1H-Magnetic Resonance Spectroscopy (탈수초화 동물 모델과 1H 자기공명분광영상)

  • Cho, Han Byul;Lee, Suji;Park, Shinwon;Kang, Ilhyang;Ma, Jiyoung;Jeong, Hyeonseok S.;Kim, Jieun E.;Yoon, Sujung;Lyoo, In Kyoon;Lim, Soo Mee;Kim, Jungyoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The proton magnetic resonance spectroscopy ($^1H-MRS$) is a tool used to detect concentrations of brain metabolites such as N-acetyl aspartate, choline, creatine, glutamate, and gamma-amino butyric acid (GABA). It has been widely used because it does not require additional devices other than the conventional magnetic resonance scanner and coils. Demyelination, or the neuronal damage due to loss of myelin sheath, is one of the common pathologic processes in many diseases including multiple sclerosis, leukodystrophy, encephalomyelitis, and other forms of autoimmune diseases. Rodent models mimicking human demyelinating diseases have been induced by using virus (e.g., Theiler's murine encephalomyelitis virus) or toxins (e.g., cuprizon or lysophosphatidyl choline). This review is an overview of the MRS findings on brain metabolites in demyelination with a specific focus on rodent models.

Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Hwang, Ji-Young;Ma, Shi-Xun;Seo, Jee-Yeon;Ko, Yong-Hyun;Kim, Hyoung-Chun;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 2016
  • Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

Determination of Optimal Harvest Time of Chuchung Variety Green Rice® (Oryza sativa L.) with High Contents of GABA, γ-Oryzanol, and α-Tocopherol

  • Kim, Hoon;Kim, Oui-Woung;Ha, Ae Wha;Park, Soojin
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • In our previous study, an early-maturing variety of rice (Oryza sativa L.), Jinbu can have feature with unique green color, various phytochemicals as well as nutritive components by the optimal early harvesting, called Green Rice$^{(R)}$ (GR). The aims of the present field experiments were to evaluate the changes in the weight of 1,000 kernels, yield, and contents of proximate and bioactive compounds in Chuchung, a mid-late maturing variety, during the pre-harvest maturation of rough rice and to research the appropriate harvest time and potent bioactivity of Chuchung GR. The weights of 1,000 kernels of Chuchung GR dramatically increased until 27 days after heading (DAH). The yields of Chuchung GR declined after 27 DAH and significantly declined to 0.0% after 45 DAH. The caloric value and total mineral contents were higher in the GR than in the full ripe stage, the brown rice (BR). In the GR, the contents of bioactive compounds, such as ${\gamma}$-aminobutyric acid, ${\gamma}$-oryzanol, and ${\alpha}$-tocopherol, were much higher (P<0.05) than those in the BR, specifically during 24~27 DAH. Therefore, bioactive Chuchung GR can be produced with a reasonable yield at 24~27 DAH and it could be useful for applications in various nutritive and functional food products.

Characteristics of Pop-rice and Rice Tea Using Black Sticky Rice with Giant Embryo (흑찰거대배아미를 이용한 팝라이스와 흑미차의 품질 특성)

  • Han, Sang-Ik;Seo, Woo Duck;Na, Ji-Eun;Park, Ji-Young;Park, Dong-Soo;Cho, Jun-Hyun;Lee, Jong-Hee;Seo, Kyung-Hye;Sim, Eun-Yeong;Nam, Min-Hee
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Recently developed black waxy rice with a giant embryo ('Nunkeunheukchal', BGE) was selected and processed to produce high quality nutritional food. BGE contains high levels of several phytochemicals with antioxidant activities, as well as other reported health beneficial properties. In addition, the giant embryo has high protein, lipid, and amino acids contents. Within the free amino acids, ${\gamma}$-aminobutyric acid (GABA), a major inhibitory neurotransmitter, has long been used for treating the aftereffects of brain injuries and stroke. A method for manufacturing pop-rice and black rice tea by popping process in BGE is provided to increase a taste, nutrition and functionality. The produced 'pop-rice' showed increased protein (11.3%) and lipid (3.7%) contents compared with control variety, IB ('Ilmibyeo'). In addition, melanoidin related products, polyphenol and functional amino acid contents were increased by the popping process. Pop-rice tea made of BGE showed the highest extraction of total sugar, glucose, raffinose and sucrose (4 times higher than brown rice) by hot water. Scavenging activity ($SC_{50}$) of processed BGE rice powder showed strong antioxidative activity of 0.24 mg/ml using DPPH and 1.82 mg/ml using ABTs method. Thereafter, these results suggested that the popping processed rice of BGE could be one of the promising materials for healthy food development.