Animal Models of Demyelination and 1H-Magnetic Resonance Spectroscopy

탈수초화 동물 모델과 1H 자기공명분광영상

  • 조한별 (유타대학교 뇌과학연구원) ;
  • 이수지 (이화여자대학교 뇌융합과학연구원) ;
  • 박신원 (이화여자대학교 뇌융합과학연구원) ;
  • 강일향 (이화여자대학교 뇌융합과학연구원) ;
  • 마지영 (이화여자대학교 뇌융합과학연구원) ;
  • 정현석 (가톨릭대학교 인천성모병원 영상의학과) ;
  • 김지은 (이화여자대학교 뇌융합과학연구원) ;
  • 윤수정 (이화여자대학교 뇌융합과학연구원) ;
  • 류인균 (이화여자대학교 뇌융합과학연구원) ;
  • 임수미 (이화여자대학교 뇌융합과학연구원) ;
  • 김정윤 (이화여자대학교 뇌융합과학연구원)
  • Received : 2016.10.06
  • Accepted : 2016.10.28
  • Published : 2017.02.28

Abstract

The proton magnetic resonance spectroscopy ($^1H-MRS$) is a tool used to detect concentrations of brain metabolites such as N-acetyl aspartate, choline, creatine, glutamate, and gamma-amino butyric acid (GABA). It has been widely used because it does not require additional devices other than the conventional magnetic resonance scanner and coils. Demyelination, or the neuronal damage due to loss of myelin sheath, is one of the common pathologic processes in many diseases including multiple sclerosis, leukodystrophy, encephalomyelitis, and other forms of autoimmune diseases. Rodent models mimicking human demyelinating diseases have been induced by using virus (e.g., Theiler's murine encephalomyelitis virus) or toxins (e.g., cuprizon or lysophosphatidyl choline). This review is an overview of the MRS findings on brain metabolites in demyelination with a specific focus on rodent models.

Keywords

References

  1. de Graaf RA. Basic Principles. In: de Graaf RA, editor. In vivo NMR spectroscopy: principles and techniques. 2nd ed. Chichester: John Wiley & Sons;2007. p.1-42.
  2. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014;270:658-679. https://doi.org/10.1148/radiol.13130531
  3. Waxman SG. Membranes, myelin, and the pathophysiology of multiple sclerosis. N Engl J Med 1982;306:1529-1533. https://doi.org/10.1056/NEJM198206243062505
  4. Poser CM. Leukodystrophy and the concept of dysmyelination. Arch Neurol 1961;4:323-332. https://doi.org/10.1001/archneur.1961.00450090089013
  5. Marrie RA. Environmental risk factors in multiple sclerosis aetiology. Lancet Neurol 2004;3:709-718. https://doi.org/10.1016/S1474-4422(04)00933-0
  6. Devic E. Myelite subaigue compliquee de nevrite optique. Bull Med 1894;8:1033-1034.
  7. Apatoff B. Demyelinating disorders. In: Porter RS, editor. The Merck Manual. 19th ed. Whitehouse Station, NJ: Merck Sharp & Dohme;2011. p.1943-1948.
  8. Degaonkar MN, Khubchandhani M, Dhawan JK, Jayasundar R, Jagannathan NR. Sequential proton MRS study of brain metabolite changes monitored during a complete pathological cycle of demyelination and remyelination in a lysophosphatidyl choline (LPC)-induced experimental demyelinating lesion model. NMR Biomed 2002;15:293-300. https://doi.org/10.1002/nbm.771
  9. Pirko I, Johnson A, Gamez J, Macura SI, Rodriguez M. Disappearing "T1 black holes" in an animal model of multiple sclerosis. Front Biosci 2004;9:1222-1227. https://doi.org/10.2741/1322
  10. Denic A, Bieber A, Warrington A, Mishra PK, Macura S, Rodriguez M. Brainstem 1H nuclear magnetic resonance (NMR) spectroscopy: marker of demyelination and repair in spinal cord. Ann Neurol 2009;66:559-564. https://doi.org/10.1002/ana.21758
  11. Denic A, Johnson AJ, Bieber AJ, Warrington AE, Rodriguez M, Pirko I. The relevance of animal models in multiple sclerosis research. Pathophysiology 2011;18:21-29. https://doi.org/10.1016/j.pathophys.2010.04.004
  12. Zendedel A, Beyer C, Kipp M. Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 2013;51:567-572. https://doi.org/10.1007/s12031-013-0026-4
  13. Koundal S, Gandhi S, Kaur T, Khushu S. Neurometabolic and structural alterations in rat brain due to acute hypobaric hypoxia: in vivo 1H MRS at 7 T. NMR Biomed 2014;27:341-347. https://doi.org/10.1002/nbm.3068
  14. Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2009;64:12-21. https://doi.org/10.1016/j.crad.2008.07.002
  15. Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics 2007;4:330-345. https://doi.org/10.1016/j.nurt.2007.04.009
  16. Atlas SW. Magnetic resonance imaging of the brain and spine. Philadelphia: Lippincott Williams & Wilkins;2009.
  17. Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 1987;508:333-348. https://doi.org/10.1111/j.1749-6632.1987.tb32915.x
  18. Frahm J, Merboldt KD, Hanicke W. Localized proton spectroscopy using stimulated echoes. J Magn Reson (1969) 1987;72:502-508. https://doi.org/10.1016/0022-2364(87)90154-5
  19. Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981-989. https://doi.org/10.1523/JNEUROSCI.13-03-00981.1993
  20. Wilken B, Dechent P, Brockmann K, Finsterbusch J, Baumann M, Ebell W, et al. Quantitative proton magnetic resonance spectroscopy of children with adrenoleukodystrophy before and after hematopoietic stem cell transplantation. Neuropediatrics 2003;34:237-246. https://doi.org/10.1055/s-2003-43254
  21. Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 2005;53:256-266. https://doi.org/10.1002/mrm.20366
  22. Bizzi A, Castelli G, Bugiani M, Barker PB, Herskovits EH, Danesi U, et al. Classification of childhood white matter disorders using proton MR spectroscopic imaging. AJNR Am J Neuroradiol 2008;29:1270-1275. https://doi.org/10.3174/ajnr.A1106
  23. Clark JB. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998;20:271-276. https://doi.org/10.1159/000017321
  24. Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991;45:37-45. https://doi.org/10.1016/0306-4522(91)90101-S
  25. Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. NAcetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007;81:89-131. https://doi.org/10.1016/j.pneurobio.2006.12.003
  26. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB. Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 1996;7:1397-1400. https://doi.org/10.1097/00001756-199605310-00014
  27. Schwarcz A, Natt O, Watanabe T, Boretius S, Frahm J, Michaelis T. Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 2003;49:822-827. https://doi.org/10.1002/mrm.10445
  28. Nilsen LH Melo TM, Saether O, Witter MP, Sonnewald U. Altered neurochemical profile in the McGill-R-Thy1-APP rat model of Alzheimer's disease: a longitudinal in vivo 1H MRS study. J Neurochem 2012;123:532-541. https://doi.org/10.1111/jnc.12003
  29. Delli Pizzi S, Rossi C, Di Matteo V, Esposito E, Guarnieri S, Mariggio MA, et al. Morphological and metabolic changes in the nigrostriatal pathway of synthetic proteasome inhibitor (PSI)-treated rats: a MRI and MRS study. PLoS One 2013;8:e56501. https://doi.org/10.1371/journal.pone.0056501
  30. Orije J, Kara F, Guglielmetti C, Praet J, Van der Linden A, Ponsaerts P, et al. Longitudinal monitoring of metabolic alterations in cuprizone mouse model of multiple sclerosis using 1H-magnetic resonance spectroscopy. Neuroimage 2015;114:128-135. https://doi.org/10.1016/j.neuroimage.2015.04.012
  31. Praet J, Orije J, Kara F, Guglielmetti C, Santermans E, Daans J, et al. Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra. NMR Biomed 2015;28:505-513. https://doi.org/10.1002/nbm.3277
  32. Xuan Y, Yan G, Wu R, Huang Q, Li X, Xu H. The cuprizone-induced changes in (1)H-MRS metabolites and oxidative parameters in C57BL/6 mouse brain: effects of quetiapine. Neurochem Int 2015;90:185-192. https://doi.org/10.1016/j.neuint.2015.08.015
  33. Yan G, Xuan Y, Dai Z, Shen Z, Zhang G, Xu H, et al. Brain metabolite changes in subcortical regions after exposure to cuprizone for 6 weeks: potential implications for schizophrenia. Neurochem Res 2015;40:49-58. https://doi.org/10.1007/s11064-014-1464-2
  34. Richards TL. Proton MR spectroscopy in multiple sclerosis: value in establishing diagnosis, monitoring progression, and evaluating therapy. AJR Am J Roentgenol 1991;157:1073-1078. https://doi.org/10.2214/ajr.157.5.1927795
  35. Arnold DL, Matthews PM, Francis G, Antel J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 1990;14:154-159. https://doi.org/10.1002/mrm.1910140115
  36. De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, Arnold DL. In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 1999;122(Pt 10):1933-1939. https://doi.org/10.1093/brain/122.10.1933
  37. Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, et al. Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 1999;20:1619-1627.
  38. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 1992;281(Pt 1):21-40. https://doi.org/10.1042/bj2810021
  39. de Graaf RA. In vivo NMR spectroscopy-static aspects. In: de Graaf RA, editor. In vivo NMR spectroscopy: principles and techniques. 2nd ed. Chichester: John Wiley & Sons;2007. p.43-110.
  40. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM. Aging of the adult human brain: in vivo quantitation of metabolite content with proton magnetic resonance spectroscopy. J Magn Reson Imaging 1999;9:711-716. https://doi.org/10.1002/(SICI)1522-2586(199905)9:5<711::AID-JMRI14>3.0.CO;2-3
  41. Danielsen ER, Ross B. Magnetic resonance spectroscopy diagnosis of neurological diseases. New York: Marcel Dekker;1999.
  42. Lowry OH, Berger SJ, Chi MM, Carter JG, Blackshaw A, Outlaw W. Diversity of metabolic patterns in human brain tumors--I. High energy phosphate compounds and basic composition. J Neurochem 1977;29:959-977. https://doi.org/10.1111/j.1471-4159.1977.tb06500.x
  43. Tarhan NC, Agildere AM, Benli US, Ozdemir FN, Aytekin C, Can U. Osmotic demyelination syndrome in end-stage renal disease after recent hemodialysis: MRI of the brain. AJR Am J Roentgenol 2004;182:809-816. https://doi.org/10.2214/ajr.182.3.1820809
  44. Inglese M, Li BS, Rusinek H, Babb JS, Grossman RI, Gonen O. Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 2003;50:190-195. https://doi.org/10.1002/mrm.10481
  45. Miller BL. A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-aspartate, creatine and choline. NMR Biomed 1991;4:47-52. https://doi.org/10.1002/nbm.1940040203
  46. Gill SS, Small RK, Thomas DG, Patel P, Porteous R, Van Bruggen N, et al. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed 1989;2:196-200. https://doi.org/10.1002/nbm.1940020505
  47. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001;265:54-84. https://doi.org/10.1002/ar.1058
  48. Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005;128(Pt 5):1016-1025. https://doi.org/10.1093/brain/awh467
  49. Matthews PM, Francis G, Antel J, Arnold DL. Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology 1991;41:1251-1256. https://doi.org/10.1212/WNL.41.8.1251
  50. Brenner RE, Munro PM, Williams SC, Bell JD, Barker GJ, Hawkins CP, et al. The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 1993;29:737-745. https://doi.org/10.1002/mrm.1910290605
  51. Simone IL, Federico F, Trojano M, Tortorella C, Liguori M, Giannini P, et al. High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J Neurol Sci 1996;144:182-190. https://doi.org/10.1016/S0022-510X(96)00224-9
  52. Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M. Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 2001;14:8-15. https://doi.org/10.1002/jmri.1144
  53. Tartaglia MC, Narayanan S, De Stefano N, Arnaoutelis R, Antel SB, Francis SJ, et al. Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 2002;249:1382-1390. https://doi.org/10.1007/s00415-002-0846-6
  54. Butteriss DJ, Ismail A, Ellison DW, Birchall D. Use of serial proton magnetic resonance spectroscopy to differentiate low grade glioma from tumefactive plaque in a patient with multiple sclerosis. Br J Radiol 2003;76:662-665. https://doi.org/10.1259/bjr/85069069
  55. Tourbah A, Stievenart JL, Iba-Zizen MT, Lubetzki C, Baumann N, Eymard B, et al. Localized proton magnetic resonance spectroscopy in patients with adult adrenoleukodystrophy. Increase of choline compounds in normal appearing white matter. Arch Neurol 1997;54:586-592. https://doi.org/10.1001/archneur.1997.00550170062015
  56. De Stefano N, Matthews PM, Ford B, Genge A, Karpati G, Arnold DL. Short-term dichloroacetate treatment improves indices of cerebral metabolism in patients with mitochondrial disorders. Neurology 1995;45:1193-1198. https://doi.org/10.1212/WNL.45.6.1193
  57. Bianchi MC, Tosetti M, Battini R, Manca ML, Mancuso M, Cioni G, et al. Proton MR spectroscopy of mitochondrial diseases: analysis of brain metabolic abnormalities and their possible diagnostic relevance. AJNR Am J Neuroradiol 2003;24:1958-1966.
  58. Jessen F, Block W, Traber F, Keller E, Flacke S, Papassotiropoulos A, et al. Proton MR spectroscopy detects a relative decrease of N-acetylaspartate in the medial temporal lobe of patients with AD. Neurology 2000;55:684-688. https://doi.org/10.1212/WNL.55.5.684
  59. Ohrmann P, Siegmund A, Suslow T, Pedersen A, Spitzberg K, Kersting A, et al. Cognitive impairment and in vivo metabolites in firstepisode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J Psychiatr Res 2007;41:625-634. https://doi.org/10.1016/j.jpsychires.2006.07.002
  60. Saneto RP, Friedman SD, Shaw DW. Neuroimaging of mitochondrial disease. Mitochondrion 2008;8:396-413. https://doi.org/10.1016/j.mito.2008.05.003
  61. Keshavan MS, Dick RM, Diwadkar VA, Montrose DM, Prasad KM, Stanley JA. Striatal metabolic alterations in non-psychotic adolescent offspring at risk for schizophrenia: a (1)H spectroscopy study. Schizophr Res 2009;115:88-93. https://doi.org/10.1016/j.schres.2009.08.012
  62. Erecinska M, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 1990;35:245-296. https://doi.org/10.1016/0301-0082(90)90013-7
  63. Choi C, Coupland NJ, Bhardwaj PP, Kalra S, Casault CA, Reid K, et al. T2 measurement and quantification of glutamate in human brain in vivo. Magn Reson Med 2006;56:971-977. https://doi.org/10.1002/mrm.21055
  64. Srinivasan R, Cunningham C, Chen A, Vigneron D, Hurd R, Nelson S, et al. TE-averaged two-dimensional proton spectroscopic imaging of glutamate at 3 T. Neuroimage 2006;30:1171-1178. https://doi.org/10.1016/j.neuroimage.2005.10.048
  65. Kreis R, Farrow N, Ross BD. Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed 1991;4:109-116. https://doi.org/10.1002/nbm.1940040214
  66. Ross BD. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 1991;4:59-63. https://doi.org/10.1002/nbm.1940040205
  67. Tkac I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001;46:451-456. https://doi.org/10.1002/mrm.1213
  68. Mason GF, Pan JW, Ponder SL, Twieg DB, Pohost GM, Hetherington HP. Detection of brain glutamate and glutamine in spectroscopic images at 4.1 T. Magn Reson Med 1994;32:142-145. https://doi.org/10.1002/mrm.1910320121
  69. Ugurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, et al. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003;21:1263-1281. https://doi.org/10.1016/j.mri.2003.08.027
  70. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 2002;3:728-739. https://doi.org/10.1038/nrn920
  71. Berrettini WH, Nurnberger JI Jr, Hare TA, Simmons-Alling S, Gershon ES, Post RM. Reduced plasma and CSF gamma-aminobutyric acid in affective illness: effect of lithium carbonate. Biol Psychiatry 1983;18:185-194.
  72. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OA, et al. Reduced cortical gamma-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 1999;56:1043-1047. https://doi.org/10.1001/archpsyc.56.11.1043
  73. Cotter D, Landau S, Beasley C, Stevenson R, Chana G, MacMillan L, et al. The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia. Biol Psychiatry 2002;51:377-386. https://doi.org/10.1016/S0006-3223(01)01243-4
  74. Brambilla P, Perez J, Barale F, Schettini G, Soares JC. GABAergic dysfunction in mood disorders. Mol Psychiatry 2003;8:721-737, 715. https://doi.org/10.1038/sj.mp.4001362
  75. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993;15:289-298. https://doi.org/10.1159/000111347
  76. De Stefano N, Matthews PM, Antel JP, Preul M, Francis G, Arnold DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995;38:901-909. https://doi.org/10.1002/ana.410380610
  77. Koopmans RA, Li DK, Zhu G, Allen PS, Penn A, Paty DW. Magnetic resonance spectroscopy of multiple sclerosis: in-vivo detection of myelin breakdown products. Lancet 1993;341:631-632. https://doi.org/10.1016/0140-6736(93)90391-S
  78. Katz-Brull R, Lenkinski RE, Du Pasquier RA, Koralnik IJ. Elevation of myoinositol is associated with disease containment in progressive multifocal leukoencephalopathy. Neurology 2004;63:897-900. https://doi.org/10.1212/01.WNL.0000137420.58346.9F
  79. Videen JS, Michaelis T, Pinto P, Ross BD. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest 1995;95:788-793. https://doi.org/10.1172/JCI117728
  80. Behar KL, den Hollander JA, Stromski ME, Ogino T, Shulman RG, Petroff OA, et al. High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci U S A 1983;80:4945-4648. https://doi.org/10.1073/pnas.80.16.4945
  81. Berkelbach van der Sprenkel JW, Luyten PR, van Rijen PC, Tulleken CA, den Hollander JA. Cerebral lactate detected by regional proton magnetic resonance spectroscopy in a patient with cerebral infarction. Stroke 1988;19:1556-1560. https://doi.org/10.1161/01.STR.19.12.1556
  82. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med 1989;9:126-131. https://doi.org/10.1002/mrm.1910090115
  83. Tekkok SB, Brown AM, Westenbroek R, Pellerin L, Ransom BR. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res 2005;81:644-652. https://doi.org/10.1002/jnr.20573
  84. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012;485:517-521. https://doi.org/10.1038/nature11007
  85. Pasantes-Morales H, Schousboe A. Role of taurine in osmoregulation in brain cells: mechanisms and functional implications. Amino Acids 1997;12:281-292. https://doi.org/10.1007/BF01373008
  86. Foos TM, Wu JY. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 2002;27:21-26. https://doi.org/10.1023/A:1014890219513
  87. Askwith T, Zeng W, Eggo MC, Stevens MJ. Oxidative stress and dysregulation of the taurine transporter in high-glucose-exposed human Schwann cells: implications for pathogenesis of diabetic neuropathy. Am J Physiol Endocrinol Metab 2009;297:E620-E628. https://doi.org/10.1152/ajpendo.00287.2009
  88. Askwith T, Zeng W, Eggo MC, Stevens MJ. Taurine reduces nitrosative stress and nitric oxide synthase expression in high glucose-exposed human Schwann cells. Exp Neurol 2012;233:154-162. https://doi.org/10.1016/j.expneurol.2011.09.010
  89. Pascual JM, Solivera J, Prieto R, Barrios L, Lopez-Larrubia P, Cerdan S, et al. Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by (1)H NMR spectroscopy. J Neurotrauma 2007;24:944-959. https://doi.org/10.1089/neu.2006.0190