References
- Hesketh S, Jessop DS, Hogg S, Harbuz MS. Differential actions of acute and chronic citalopram on the rodent hypothalamicpituitary- adrenal axis response to acute restraint stress. J Endocrinol. 2005;185:373-382. https://doi.org/10.1677/joe.1.06074
- Gonzalo-Ruiz A, Morte L, Flecha JM, Sanz JM. Neurotransmitter characteristics of neurons projecting to the supramammillary nucleus of the rat. Anat Embryol (Berl). 1999;200:377-392. https://doi.org/10.1007/s004290050287
- Wyss JM, Swanson LW, Cowan WM. Evidence for an input to the molecular layer and the stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus. Anat Embryol (Berl). 1979;156:165-176. https://doi.org/10.1007/BF00300012
- Vertes RP. PHA-L analysis of projections from the supramammillary nucleus in the rat. J Comp Neurol. 1992;326:595-622. https://doi.org/10.1002/cne.903260408
- Wyss JM, Swanson LW, Cowan WM. A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience. 1979;4:463-476. https://doi.org/10.1016/0306-4522(79)90124-6
- Vertes RP, McKenna JT. Collateral projections from the supramammillary nucleus to the medial septum and hippocampus. Synapse. 2000;38:281-293. https://doi.org/10.1002/1098-2396(20001201)38:3<281::AID-SYN7>3.0.CO;2-6
- Zamir N, Palkovits M, Brownstein M. Distribution of immunoreactive Met-enkephalin-Arg6-Gly7-Leu8 and Leu-enkephalin in discrete regions of the rat brain. Brain Res. 1985;326:1-8. https://doi.org/10.1016/0006-8993(85)91378-2
- Ruggiero DA, Giuliano R, Anwar M, Stornetta R, Reis DJ. Anatomical substrates of cholinergic-autonomic regulation in the rat. J Comp Neurol. 1990;292:1-53. https://doi.org/10.1002/cne.902920102
- Gonzalo-Ruiz A, Alonso A, Sanz JM, Llinás RR. A dopaminergic projection to the rat mammillary nuclei demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase and tyrosine hydroxylase immunohistochemistry. J Comp Neurol. 1992;321:300-311. https://doi.org/10.1002/cne.903210209
- Hayakawa T, Zyo K. Fine structure of the supramammillary nucleus of the rat: analysis of the ultrastructural character of dopaminergic neurons. J Comp Neurol. 1994;346:127-136. https://doi.org/10.1002/cne.903460109
- Leranth C, Kiss J. A population of supramammillary area calretinin neurons terminating on medial septal area cholinergic and lateral septal area calbindin-containing cells are aspartate/glutamatergic. J Neurosci. 1996;16:7699-7710.
- Borhegyi Z, Magloczky Z, Acsady L, Freund TF. The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience. 1998;82:1053-1065.
- Mizumori SJ, McNaughton BL, Barnes CA. A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. J Neurophysiol. 1989; 61:15-31.
- Kocsis B, Vertes RP. Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. J Neurosci. 1994;14:7040-7052.
- Ikemoto S, Witkin BM, Zangen A, Wise RA. Rewarding effects of AMPA administration into the supramammillary or posterior hypothalamic nuclei but not the ventral tegmental area. J Neurosci. 2004;24:5758-5765. https://doi.org/10.1523/JNEUROSCI.5367-04.2004
- Shahidi S, Motamedi F, Naghdi N. Effect of reversible inactivation of the supramammillary nucleus on spatial learning and memory in rats. Brain Res. 2004;1026:267-274. https://doi.org/10.1016/j.brainres.2004.08.030
- Swanson LW. The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull. 1982;9:321-353. https://doi.org/10.1016/0361-9230(82)90145-9
- Pan WX, McNaughton N. The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol. 2004;74:127-166. https://doi.org/10.1016/j.pneurobio.2004.09.003
- Curran T, Morgan JI. Fos: an immediate-early transcription factor in neurons. J Neurobiol. 1995;26:403-412. https://doi.org/10.1002/neu.480260312
- Choi DC, Furay AR, Evanson NK, Ulrich-Lai YM, Nguyen MM, Ostrander MM, Herman JP. The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamicpituitary- adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology. 2008;33:659-669. https://doi.org/10.1016/j.psyneuen.2008.02.006
- Wirtshafter D, Stratford TR, Shim I. Placement in a novel environment induces fos-like immunoreactivity in supramammillary cells projecting to the hippocampus and midbrain. Brain Res. 1998;789:331-334. https://doi.org/10.1016/S0006-8993(97)01555-2
- Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 2nd ed. New York: Academic Press; 1986.
- Oh JK, Kim YS, Park HJ, Lim EM, Pyun KH, Shim I. Antidepressant effects of Soyo-san on Immobilization stress in ovariectomized female rats. Biol Pharm Bull. 2007;30:1422-1426. https://doi.org/10.1248/bpb.30.1422
- Donahue DA, Dougherty EJ, Meserve LA. Influence of a combination of two tetrachlorobiphenyl congeners (PCB 47; PCB 77) on thyroid status, choline acetyltransferase (ChAT) activity, and short- and long-term memory in 30-day-old Sprague-Dawley rats. Toxicology. 2004;203:99-107. https://doi.org/10.1016/j.tox.2004.06.011
- Wahba ZZ, Soliman KF. Effect of stress on choline acetyltransferase activity of the brain and the adrenal of the rat. Experientia. 1992;48:265-268. https://doi.org/10.1007/BF01930471
- Jiang F, Khanna S. Microinjection of carbachol in the supramammillary region suppresses CA1 pyramidal cell synaptic excitability. Hippocampus. 2006;16:891-905. https://doi.org/10.1002/hipo.20219
- Lee HC, Chang DE, Yeom M, Kim GH, Choi KD, Shim I, Lee HJ, Hahm DH. Gene expression profiling in hypothalamus of immobilization-stressed mouse using cDNA microarray. Brain Res Mol Brain Res. 2005;135:293-300. https://doi.org/10.1016/j.molbrainres.2004.11.016
- Djordjevic J, Vuckovic T, Jasnic N, Cvijic G. Effect of various stressors on the blood ACTH and corticosterone concentration in normotensive Wistar and spontaneously hypertensive Wistar-Kyoto rats. Gen Comp Endocrinol. 2007;153:217-220. https://doi.org/10.1016/j.ygcen.2007.02.004
- Cullinan WE, Helmreich DL, Watson SJ. Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J Comp Neurol. 1996;368:88-99. https://doi.org/10.1002/(SICI)1096-9861(19960422)368:1<88::AID-CNE6>3.0.CO;2-G
- McEwen BS. Corticosteroids and hippocampal plasticity. Ann N Y Acad Sci. 1994;746:134-142.
- Kellendonk C, Gass P, Kretz O, Schutz G, Tronche F. Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull. 2002;57:73-83. https://doi.org/10.1016/S0361-9230(01)00638-4
- Corodimas KP, LeDoux JE, Gold PW, Schulkin J. Corticosterone potentiation of conditioned fear in rats. Ann N Y Acad Sci. 1994;746:392-393.
- McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105-122. https://doi.org/10.1146/annurev.neuro.22.1.105
- McEwen BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol. 1995;5:205-216. https://doi.org/10.1016/0959-4388(95)80028-X
- de Groote L, Linthorst AC. Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience. 2007;148:794-805. https://doi.org/10.1016/j.neuroscience.2007.06.030
Cited by
- Effect of chronic immobilization stress on the pancreatic structure and the possible protective role of testosterone administration in male albino rats : vol.35, pp.3, 2012, https://doi.org/10.1097/01.ehx.0000418064.05379.e2
- New insights into the regulation of synaptic plasticity from an unexpected place: Hippocampal area CA2 vol.19, pp.9, 2012, https://doi.org/10.1101/lm.025304.111
- CP-154,526 Modifies CREB Phosphorylation and Thioredoxin-1 Expression in the Dentate Gyrus following Morphine-Induced Conditioned Place Preference vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0136164
- Substance P induces plasticity and synaptic tagging/capture in rat hippocampal area CA2 vol.114, pp.41, 2017, https://doi.org/10.1073/pnas.1711267114
- The role of the supramammillary area of the hypothalamus in cognitive functions vol.22, pp.1, 2012, https://doi.org/10.1080/19768354.2018.1427627
- Anti-stress effects of human placenta extract: possible involvement of the oxidative stress system in rats vol.18, pp.None, 2012, https://doi.org/10.1186/s12906-018-2193-x
- Antidepressant effect and neural mechanism of Acer tegmentosum in repeated stress–induced ovariectomized female rats vol.24, pp.4, 2012, https://doi.org/10.1080/19768354.2020.1808063
- CA2: A Highly Connected Intrahippocampal Relay vol.43, pp.1, 2020, https://doi.org/10.1146/annurev-neuro-080719-100343
- Selective neuromodulation and mutual inhibition within the CA3–CA2 system can prioritize sequences for replay vol.30, pp.11, 2012, https://doi.org/10.1002/hipo.23256