• 제목/요약/키워드: $G^E$ models

검색결과 663건 처리시간 0.026초

Interpretation of Genotype × Environment Interaction of Sesame Yield Using GGE Biplot Analysis

  • Shim, Kang-Bo;Shin, Seong-Hyu;Shon, Ji-Young;Kang, Shin-Gu;Yang, Woon-Ho;Heu, Sung-Gi
    • 한국작물학회지
    • /
    • 제60권3호
    • /
    • pp.349-354
    • /
    • 2015
  • The AMMI (additive main effects and multiplicative interaction) and GGE (genotype main effect and genotype by environment interaction) biplot which were accounted for a substantial part of total sum of square in the analysis of variance suggested to be more appropriate models for explaining G $\times$ E interaction. The grain yield of total ten sesame genotypes was significantly affected by environment which explained 61% of total variation, whereas genotype and genotype x environment interaction (G $\times$ E) were explained 16%, 24% respectively. From the results of experiment, three genotypes Miryang49, Koppoom and Ansan were unstable, whereas other three genotypes Kyeongbuk18, Miryang50 and Kanghuk which were shorter projections to AEA ordinate were relatively stable over the environments. Yangbak which was closeness to the mean yield and short projection of the genotype marker lines was regarded as genotype indicating good performance with stability. Ansan, Miryang48 and Yangbaek showed the best performance in the environments of Naju, Suwon, Iksan and Andong. Similarly, genotype Miyrang47 exhibited the best performance in the environments of Chuncheon and Miryang. Andong is the closest to the ideal environment, and therefore, is the most desirable among eight environments.

3차 상태방정식과 여러 혼합법칙 및 Kirkwood-Buff용액이론을 이용한 초임계유체내에서의 용질의 무한희석 부분몰부피의 계산 (Prediction of partial molar volumes of solutes in supercritical CO2 using the Peng-Robinson equation of state with various mixing rules and Kirkwood-Buff solution theory)

  • 전영표;박종선;권영중
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.253-260
    • /
    • 1999
  • Two thermodynamic models were used to predict the partial molar volumes of solutes in supercritical carbon dioxide at infinite dilution: (1) the Peng-Robinson equation of state with various mixing rules including those based on $EOS/G^E$ (2) the Kirkwood Buff fluctuation integral with the hard sphere expansion (HSE) method. The Kirkwood-Buff fluctuation integral method, in which an equation of state for pure component and molecular parameters are required, produced better results especially near the critical point than the Peng-Robinson equation of state with the several mixing rules based an $EOS/G^E$. When the $EOS/G^E$ mixing rules were used, poorer results were obtained compared with the classical mixing rule and Kirkwood-Buff model.

  • PDF

링 Swallow 동작의 E.M.G 분석 (EMG Analysis of Swallow Motion in Rings)

  • 박광동
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 2004
  • The objective of the study is to analyze the myoelectrical activity involved in performing the Swallow movement, a D-level technique, in order to use it as the basic research data in helping train gymnasts in how to perform strength-related techniques. To this end, four national representative athletes who participated in the 2002 Busan Asian Games were selected. The results of the comparison analysis of the individual models are summarized as follows. 1) The results of the E.M.G analysis showed that during the Swallow movement, the myoelectrical activity was detected higher in pectorialis major muscle and bicep brachii muscle than in trapezius muscle and deltoid muscle. 2) The results of the E.M.G analysis showed that during the Swallow movement, the myoelectrical activity was measured high in triceps brachii muscle and palmaris longus muscle, while the myoelectrical activity was recorded low in latissimus dorsi muscle and rectus abdominis muscle. 3) In performing the Swallow in the rings, the mean average (%) was found high in the order of erector spinae, pectorialis major muscle, palmaris longus muscle, triceps brachii muscle, deltoid muscle, latissimus dorsi muscle, and trapezius muscle. All taken together, the athletes showed a difference in the distribution of the muscles during the performance of the Swallow. The muscle that showed a constant distribution among the athletes was pectoralis major muscle, which proves that for a stable performance, it is ideal to increase the myoelectrical activity in pectoralis major muscle.

Design Structure Matrix를 활용한 인체측정학적 제품설계 방법: 컴퓨터 워크스테이션 설계 적용 (An Anthropometric Product Design Approach Using Design Structure Matrix (DSM): Application to Computer Workstation Design)

  • 정기효;권오채;유희천
    • 대한인간공학회지
    • /
    • 제26권3호
    • /
    • pp.111-115
    • /
    • 2007
  • Design equations for anthropometric product design are developed by considering the geometrical relationships of design dimensions and anthropometric dimensions. The present study applied the design structure matrix (DSM) method to the development of design equations for a computer workstation, and compared design values from the design equations with corresponding design values of ergonomic recommendations and existing products. The relationships between design dimensions (e.g., legroom and worktable) were analyzed by a DSM, and then the application order of design equations (e.g., seatpan, backrest, armrest, legroom, and worktable in descending order) was determined. Next, design equations were developed by analyzing the geometric relationships between computer workstation design dimensions and anthropometric dimensions. Finally, design values for a computer workstation were determined by considering a standard posture defined and representative human models (5th, 50th, 95th %ile). The design values calculated using the design equations were similar with those of ergonomic recommendations found in literature and two commercial products measured in the study; however, some design values (e.g., seatpan height) were different due to discrepancy in standard posture. The DSM method would be utilized to systematically analyze the relationships between design dimensions for anthropometric product design.

Metal-Poor F-G-K type Local Subdwarfs From SDSS + GAIA GR2: Spectrophotometric & Kinematic Properties

  • Yang, Soung-Chul;Kim, Young Kwang;Lee, Young Sun;Lee, Hogyu
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • We introduce a new project of constructing a large spectro-photometric samples of metal-poor (i.e. [Fe/H] < -1.0) subdwarfs in the Galactic halo. The sample is collected from a compilation of the stellar objects that are cross-identified both in the Sloan Digital Sky Survey (SDSS) and recently published data from GAIA mission. The color range of the selected stars covers 0.0 < (g-r) < 2.0; thus the spectral types of our sample span from early F- through late K-type stars on the metal-poor main sequence (i.e. the local subdwarf sequence). We scrutinized the physical, chemical, and kinematical properties of our samples using their SDSS medium-resolution (R ~ 2000) spectra, combined with accurately measured proper motions from GAIA satellite. Our study will provide useful information on the global trend in the various properties (e.g. abundance pattern as a function of the galactocentric distance; rotational velocity vs [Fe/H] ${\cdots}$ etc) of the metal-poor subdwarf populations in the Galactic halo, which is ultimately important to better understand metal-poor stellar evolutionary models and chemical evolution of the Milky Way halo in the early phase of its formation. Further our comprehensive catalog of the Galactic field halo subdwarfs collected in this study will serve a solid groundwork for future follow-up high resolution spectroscopic observations on many interesting individual targets.

  • PDF

암석거동의 수치해석적 연구를 위한 균열모형의 적용 (Application of Mechanical Crack Model to Numerical Study of Rock Mass Behavior)

  • 박도현;전석원
    • 한국터널지하공간학회 논문집
    • /
    • 제2권2호
    • /
    • pp.72-85
    • /
    • 2000
  • 암석은 지질학적 생성과정으로 인해 잠재적으로 많은 구조적 결함을 내포하고 있는 재료이다. 이러한 구조적 결함으로 인해 압축하중을 받고 있는 암석의 변형거동 및 파괴는 비선형적이다. 지금까지의 연구들에서는 암석의 비선형 거동을 모사하기 위해 균열모형, 즉 활주균열모형 (Sliding crack model) 과 전단균열모형 (Shear crack model) 을 사용하였다. 이 연구들에서는 암석의 비선형 응력-변형률 곡선과 균열성장으로 인해 발생되는 유효탄성정수들 ($E_1$, $E_2$, ${\nu}_1$, ${\nu}_2$, $G_2$) 의 변화와 같은 여러 가지 암석 거동을 모사하였다 (Kemeny, 1993; Jeon, 1996, 1998). 대부분의 이러한 연구들은 주로 균열모형의 암석거동의 적용에 대한 타당성을 검증하는데 그쳤으며 지하공간이나 사면설계 등의 실제적인 수치해석을 목적으로 균열모형을 적용한 연구는 그다지 많지 않다. 본 연구에서는 암석의 비선형 응력 변형률 곡선을 모사함으로써 균열모형의 암석에의 적용에 대한 타당성을 검증하며 실제적인 수치해석, 즉 상용되고 있는 유한요소해석 프로그램에 균열모형을 적용하였다.

  • PDF

아토피 피부염의 동물 모델인 NC/Nga Mice에서의 우묵사스레피의 면역조절 효과 (Immunomodulatory Effects of Eurya emarginata on NC/Nga Mice as Models for Atopic Dermatitis)

  • 이승헌
    • 생명과학회지
    • /
    • 제24권4호
    • /
    • pp.447-453
    • /
    • 2014
  • 본 연구에서는 1-chloro-2,4-dinitrobenzene (DNCB)로 유도한 아토피 피부염 동물 모델인 NC/Nga mice에 대한 Eurya emarginata 에탄올 추출물(EE-70E)의 면역 조절 효능을 확인하고자 하였다. DNCB를 5주간 도포하여 유도한 아토피 동물 모델인 NC/Nga mice에 EE-70E를 3주간 경구 투여한 후 scratching behavior 및 clinical skin severity score, 혈청 면역지표(IL-4, IL-13, IL-17, histamine, IgG1, IgE)의 농도를 측정하였다. DNCB를 도포하여 3주동안 경구 투여한 결과, EE-70E의 200 및 400mg/kg 용량에서 clinical skin severity의 감소, scratching behavior의 감소 및 혈중 IL-4 및 IL-13, IL-17, histamine, IgE의 농도가 대조군과 비교하여 유의성 있게 농도의존적으로 감소하는 결과가 관찰되었다(p<0.05). EE-70E의 경구투여는 NC/Nga mice 아토피 피부염 동물모델에서 면역조절 작용 및 아토피 피부염의 개선 효과를 가짐을 나타냈다. 따라서 EE-70E은 아토피 피부염에 유용한 천연자원으로서 기대된다.

Yonsei Evolutionary Population Synthesis (YEPS) Model -III. Spectrophotometric Evolutions of Simple Stellar Population Models based on Empirical Spectra

  • Chung, Chul;Yoon, Suk-Jin;Lee, Young-Wook
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.38.1-38.1
    • /
    • 2013
  • We present the Yonsei evolutionary population synthesis (YEPS) models based on the high-resolution empirical spectral energy distributions (SEDs). We have adopted the MILES library in the optical wavelength, and our new models based on the MILES library show good agreements with our previous models presented in the YEPS I. The effect of hot horizontal-branch (HB) stars on the integrated properties of simple stellar populations (SSPs) is again confirmed by our models based on empirical SEDs. In addition, we have extended our empirical models to the near-IR wavelength and predicted the strengths of the calcium II triplet (CaT) and the Paschen triplet (PaT) based on the INDO-US and the Cenarro library. We find that the effect of HB stars and the age of SSPs on the CaT is almost negligible. On the other hands, the PaT models are very sensitive to the existence of hot stars, e.g., HB stars and young turn-off stars, and show very similar results with Balmer lines. Interestingly, the CaT distribution of GCs in NGC 1407, which is at odds with the optical (B-I) color distribution, can be explained by the unique feature of the CaT-[Fe/H] relations that show almost the same equivalent widths in the metal-rich regime. We will also discuss the impact of the second-generation populations on the strength of the CaT.

  • PDF

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

Experimental Animal Models of Coronavirus Infections: Strengths and Limitations

  • Mark Anthony B. Casel;Rare G. Rollon;Young Ki Choi
    • IMMUNE NETWORK
    • /
    • 제21권2호
    • /
    • pp.12.1-12.17
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the emergence of SARS-CoV-2 in the human population in late 2019, it has spread on an unprecedented scale worldwide leading to the first coronavirus pandemic. SARS-CoV-2 infection results in a wide range of clinical manifestations from asymptomatic to fatal cases. Although intensive research has been undertaken to increase understanding of the complex biology of SARS-CoV-2 infection, the detailed mechanisms underpinning the severe pathogenesis and interactions between the virus and the host immune response are not well understood. Thus, the development of appropriate animal models that recapitulate human clinical manifestations and immune responses against SARS-CoV-2 is crucial. Although many animal models are currently available for the study of SARS-CoV-2 infection, each has distinct advantages and disadvantages, and some models show variable results between and within species. Thus, we aim to discuss the different animal models, including mice, hamsters, ferrets, and non-human primates, employed for SARS-CoV-2 infection studies and outline their individual strengths and limitations for use in studies aimed at increasing understanding of coronavirus pathogenesis. Moreover, a significant advantage of these animal models is that they can be tailored, providing unique options specific to the scientific goals of each researcher.