• 제목/요약/키워드: $E_*$-extension property

검색결과 30건 처리시간 0.032초

A RECENT GENERALIZATION OF COFINITELY INJECTIVE MODULES

  • Esra OZTURK SOZEN
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.397-409
    • /
    • 2023
  • Let R be an associative ring with identity and M be a left R-module. In this paper, we define modules that have the property (δ-CE) ((δ-CEE)), these are modules that have a δ-supplement (ample δ-supplements) in every cofinite extension which are generalized version of modules that have the properties (CE) and (CEE) introduced in [6] and so a generalization of Zöschinger's modules with the properties (E) and (EE) given in [23]. We investigate various properties of these modules along with examples. In particular we prove these: (1) a module M has the property (δ-CEE) if and only if every submodule of M has the property (δ-CE); (2) direct summands of a module that has the property (δ-CE) also have the property (δ-CE); (3) each factor module of a module that has the property (δ-CE) also has the property (δ-CE) under a special condition; (4) every module with composition series has the property (δ-CE); (5) over a δ-V -ring a module M has the property (δ-CE) if and only if M is cofinitely injective; (6) a ring R is δ-semiperfect if and only if every left R-module has the property (δ-CE).

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

  • Byeon, Dongho;Jeong, Keunyoung;Kim, Nayoung
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.123-132
    • /
    • 2021
  • Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars ResKLE decomposes (up to isogeny) into abelian varieties over K $$Res^L_KE{\sim}{\bigoplus_{F{\in}S}}A_F,$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then AL is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K({\sqrt[3]{D}})$ is the cyclic cubic extension of K for some D ∈ K×/(K×)3, E = Ea : y2 = x3 + a is an elliptic curve with j-invariant 0 defined over K, and EaD : y2 = x3 + aD2 is the cubic twist of Ea. In this case, we prove AL is isogenous over K to $E_a^D{\times}E_a^{D^2}$ and a property of the Selmer rank of AL, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

A Completion of Semi-simple MV-algebra

  • Choe, T.H.;Kim, E.S.;Park, Y.S.
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.481-489
    • /
    • 2005
  • We first show that any complete MV-algebra whose Boolean subalgebra of idempotent elements is atomic, called a complete MV-algebra with atomic center, is isomorphic to a product of unit interval MV-algebra 1's and finite linearly ordered MV-algebras of A(m)-type $(m{\in}{\mathbb{Z}}^+)$. Secondly, for a semi-simple MV-algebra A, we introduce a completion ${\delta}(A)$ of A which is a complete, MV-algebra with atomic center. Under their intrinsic topologies $(see\;{\S}3)$ A is densely embedded into ${\delta}(A)$. Moreover, ${\delta}(A)$ has the extension universal property so that complete MV-algebras with atomic centers are epireflective in semi-simple MV-algebras

  • PDF

L2 HARMONIC 1-FORMS ON SUBMANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

  • Chao, Xiaoli;Lv, Yusha
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.583-595
    • /
    • 2016
  • In the present note, we deal with $L^2$ harmonic 1-forms on complete submanifolds with weighted $Poincar{\acute{e}}$ inequality. By supposing submanifold is stable or has sufficiently small total curvature, we establish two vanishing theorems for $L^2$ harmonic 1-forms, which are some extension of the results of Kim and Yun, Sang and Thanh, Cavalcante Mirandola and $Vit{\acute{o}}rio$.

A NOTE ON SEMI-SELFDECOMPOSABILITY AND OPERATOR SEMI-STABILITY IN SUBORDINATION

  • Choi, Gyeong-Suk;Kim, Yun-Kyong;Joo, Sang-Yeol
    • 대한수학회보
    • /
    • 제47권3호
    • /
    • pp.483-490
    • /
    • 2010
  • Some results on inheritance of operator semi-selfdecomposability and its decreasing subclass property from subordinator to subordinated in subordination of a L$\acute{e}$evy process are given. A main result is an extension of results of [5] to semi-selfdecomposable subordinator. Its consequence is discussed.

스트레치 직물의 재질특성에 따른 신장율과 압력과의 상관관계 연구 (Fundamental Relationship Between Extensibility of Stretch Fabric and It's Pressure)

  • 이전숙
    • 대한가정학회지
    • /
    • 제30권1호
    • /
    • pp.35-47
    • /
    • 1992
  • The objective of this research was to determine whether the pressure on the cylinder by stretch fabric could be related by the size of cylinder, the amount of extension, and the properties of the fabric. The results were as follows : 1. There were linear relationships between the pressure of the fabric exerts on the cylinder and percentage of extension of the fabric, the radius of the cylinder, the tensile stress of the fabric, and the bending and shearing properties of the fabric. 2. From the results above, 4 regression equations from which the pressure could be estimated were derived by regression analysis. The equations were as follows : 1) P=a/Rb 2) P=c+ds 3) P=e+fSt 4) P=g+hB P : Pressure, R : Radius of cylinder, S : Percentage of Stretch, St : Tensile stress, B : Bending property.

  • PDF

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.