References
- Ch. D. Aliprantis and K. C. Border, Infinite dimensional Analysis, A Hitch- hicker's guide, Springer, Berlin, 1999
- A. F. Beardon, J. C. Candeal, G. Herden, E. Indurain, and G. B. Mehta,, The non-existence of a utility function and the structure of non-representable preference relations, J. Math. Econom. 37 (2002), no. 1, 17-38 https://doi.org/10.1016/S0304-4068(02)00003-4
- G. Birkhoff, Lattice theory(Third edition), American Mathematical Society, Providence, RI, 1967
- G. Bosi and G. Herden, On the structure of completely useful topologies, Appl. Gen. Topol. 3 (2002), no. 2, 145-167 https://doi.org/10.4995/agt.2002.2060
- D. S. Bridges and G. B. Mehta, Representation of preference orderings, Springer-Verlag, Berlin, 1995
- J. C. Candeal, C. Herves, and E. Indurain, Some results on representation and extension of preferences, J. Math. Econom. 29 (1998), no. 1, 75-81 https://doi.org/10.1016/S0304-4068(97)00005-0
- J. C. Candeal, E. Indurain, and G. B. Mehta, Some utility theorems on inductive limits of preordered topological spaces, Bull. Austral. Math. Soc. 52 (1995), no. 2, 235-246 https://doi.org/10.1017/S0004972700014660
- J. C. Candeal, E. Indurain, and G. B. Mehta, Utility functions on locally connected spaces, J. Math. Econom. 40 (2004), no. 6, 701-711 https://doi.org/10.1016/S0304-4068(03)00085-5
- H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1-15 https://doi.org/10.2307/1993408
- G. Debreu, Representation of a preference ordering by a numerical function, In: Thrall, R., Coombs, C. and R. Davies (eds.), Decision Processes, John Wiley, New York, 1954, 159-166
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966
- S. Eilenberg, Ordered topological spaces, Amer. J. Math. 63 (1941), 39-45 https://doi.org/10.2307/2371274
- R. Engelking, General Topology. Revised and completed edition, Heldermann Verlag, Berlin, 1989
- M. Estevez and C. Herves, On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), 305-309 https://doi.org/10.1016/0304-4068(94)00701-B
- G. Herden, Some lifting theorems for continuous utility functions, Math. Social Sci. 18 (1989), no. 2, 119-134 https://doi.org/10.1016/0165-4896(89)90042-5
- G. Herden, Topological spaces for which every continuous total preorder can be represented by a continuous utility function, Math. Social Sci. 22 (1991), no. 2, 123-126 https://doi.org/10.1016/0165-4896(91)90002-9
- G. Herden and A. Pallack, Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), no. 1, 61-82 https://doi.org/10.4995/agt.2000.3024
- R. Isler, Semicontinuous utility functions in topological spaces, Rivista di Mate-matica per le Scienze economiche e sociali 20 (1997), no. 1, 111-116 https://doi.org/10.1007/BF02688992
- P. K. Monteiro, Some results on the existence of utility functions on path connected spaces, J. Math. Econom. 16 (1987), 147-156 https://doi.org/10.1016/0304-4068(87)90004-8
- L. Nachbin, Topology and Order, Van Nostrand, New York, 1965
- A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228 https://doi.org/10.4064/sm-19-2-209-228
- T. Rader, The existence of a utility function to represent preferences, Review of Economic Studies 30 (1963), 229-232 https://doi.org/10.2307/2296323
- L. A. Steen and J. A. Jr. Seebach, Counterexamples in Topology, Dover Publications, Mineola, NY, 1995
- E. Szpilrajn-Marczewski, Remarque sur les produits cartesiens d'espaces topologiques, C.R.(Doklady) Acad. Sci. URSS 31 (1941), 525-527
- G. Yi, Continuous extensions of preferences, J. Math. Econom. 22 (1993), 547-555 https://doi.org/10.1016/0304-4068(93)90003-4
Cited by
- Fuzzy topologies generated by fuzzy relations 2016, https://doi.org/10.1007/s00500-016-2458-6
- Topologies Generated by Nested Collections vol.39, pp.2, 2016, https://doi.org/10.1007/s40840-015-0124-2
- Preorderable topologies and order-representability of topological spaces vol.156, pp.18, 2009, https://doi.org/10.1016/j.topol.2009.01.018
- Debreu-like properties of utility representations vol.44, pp.11, 2008, https://doi.org/10.1016/j.jmateco.2008.01.003
- CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES vol.49, pp.3, 2012, https://doi.org/10.4134/JKMS.2012.49.3.449
- Conditional extensions of fuzzy preorders vol.278, 2015, https://doi.org/10.1016/j.fss.2014.09.009
- Continuous Representability of Interval Orders: The Topological Compatibility Setting vol.23, pp.03, 2015, https://doi.org/10.1142/s0218488515500142
- Order representability in groups and vector spaces vol.30, pp.2, 2012, https://doi.org/10.1016/j.exmath.2012.01.007