• Title/Summary/Keyword: $Cu^+$이온

Search Result 1,031, Processing Time 0.027 seconds

Research of luminescent characteristics of ZnS:CuCl powder electroluminescent device according to the doping concentration of CuCl and frequency of the applied voltage (ZnS:Cu,Cl 후막형 전계 발광 소자의 CuCl 첨가량과 인가 전압의 진동수에 따른 발광 특성 연구)

  • Park, Yong-Kyu;Sung, Hyun-Ho;Cho, Whang-Sin;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.22-25
    • /
    • 2000
  • ZnS:Cu,Cl 형광체의 여기 및 발광 스펙트럼 측정 결과 주게인 $Cl^-$ 이온과 받게인 $Cu^+$ 이온 사이의 흡수와 발광에 기인하는 peak과 국소화된 발광 중심인 $(CU_2)^{2+}$ 이온의 흡수와 발광에 기인하는 peak이 관측되었다. CuCl의 첨가량이 증가함에 따라 $Cu^+$ 이온의 농도가 증가하게 되어 $(Cu_2)^{2+}$ 이온에 기안하는 발광으로부터 공명 에너지 전달 (Resonant Energy Transfer)의 확률이 높아지기 때문에 513 nm를 중심으로 하는 발광의 세기가 증가하게 된다. 자체 제작한 ZnS:Cu,Cl 형광체를 이용하여 제작한 소자의 휘도 측정결과 400 Hz, 100 V 에서 CuCl 의 첨가량이 0.2 mole% 일 때 휘도가 최대였고, 진동수가 증가함에 따라 휘도가 포화되는 현상이 나타났다. CuCl의 첨가량이 증가함에 따라 513 nm를 중심으로 하는 발광이 강해지고 CIE 좌표값이 녹색영역으로 이동하게 된다. 진동수가 증가하면 인가된 전압의 유지 시간이 짧아지게 되어 발광의 감쇄시간이 긴 513 nm를 중심으로 하는 발광보다 감쇄시간이 짧은 458 nm를 중심으로 하는 발광이 강해지게 되고, CIE 좌표값이 청색영역으로 이동하게 된다.

  • PDF

Adsorption and Recevery of Cu(II) and Zn(II) Ions by Algal Biomass (해조류를 이용한 Cu(II) 및 Zn(II) 이온의 흡착 및 회수)

  • Park, Kwang Ha;Jun, Bang Ook;Kim, Han Su;Kim, Young Ha
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 1996
  • Algal biomass was used in our study in order to remove some metals. After packing of 40~60 mesh algae powder into column for use of metal adsorbent, the metal solution of 1mL/min of flow rate was eluted to adsorb in algae. More amount of Cu(II) or Zn(II) ion in green algae, Ulva pertusa Kjellman than in brown algae, Sargassum horneri (Turner) C. Agarch were adsorbed and Cu(II) ion was more adsorbed in both algae than Zn(II) ion. Recovery of metal from algae is showing higher in acidic or neutral than in alkalic conditions. Cu(II) ion is recovered relatively higher than Zn(II) ion in our system.

  • PDF

EPR Study of Furan Compounds Adsorbed on Cu(Ⅱ) Y Zeolite (Cu(Ⅱ) Y Zeolite에 흡착된 푸란화합물에 대한 EPR 연구)

  • Gon Seo;Hakze Chon
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.421-425
    • /
    • 1980
  • The EPR absorption of furan compounds adsorbed on CuY zeolite was studied. With the adsorption of furan on CuY a new high field having a width of 8 gauss and g-factor of 2.002 appeared in EPR spectrum, while the original signal of Cu(Ⅱ) decreased. When 2-methylfuran was adsorbed on Cu(15)Y a new absorption band with a hyperfine structure appeared. With the increase of the degree of Cu(Ⅱ) ion exchange the resolution of the hyperfine structure became poor. The appearance of the new band was interpreted in terms of the formation of a charge transfer complex between Cu(Ⅱ) ion and the furan ring.

  • PDF

New Analytical Methods for Separation and Identification of Heavy Metals (II). A Study on the Adsorption and Recovery of Cu(Ⅱ) ion by Amberlite XAD-7 Resins Impregnated with Chelating Agents (중금속의 분리 및 검출을 위한 분석화학적 연구 (제 2 보) 킬레이트제-Amberlite XAD-7 침윤수지에 의한 Cu(II) 이온의 흡착 및 회수에 관한 연구)

  • Dae Woon Lee;Chul Hun Eum;Tae Sung Kim;Doo-Soon Shin;Koo Soon Chung
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.308-314
    • /
    • 1987
  • The adsorption behavior of some chelating agents on the Amberlite XAD-7 resin was studied to obtain the optimum conditions for the preparation of chelating agent-XAD-7 resins. The chosen chelating agents are cupferron (CP), diphenylcarbazone (DPC), salicylaldoxime (SAO), thiosalicylic acid (TSA), and dimethylglyoxime (DMG), which have been well known chelating agents to Cu(Ⅱ) and Ni (Ⅱ) ions. Among the chelating agent-XAD-7 resins, SAO-XAD-7 and DMG-XAD-7 resins were evaluated as appropriate impregnated resins by investigating their stabilities in the wide pH range and high abilities to adsorb Cu(Ⅱ) and Ni(Ⅱ) ions. The selective adsorption of Cu(Ⅱ) from Ni(Ⅱ) was possible by changing pH condition by SAO-XAD-7 resin. The adsorption capacities of SAO-XAD-7 and DMG-XAD-7 for Cu(Ⅱ) were $7{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin and $2{\times}10^{-3}mmol$ Cu(Ⅱ) per gram of resin, respectively. The quantitative recovery of Cu(Ⅱ) adsorbed by the resin was demonstrated. The adsorption behavior of Cu(Ⅱ) and Ni(Ⅱ) by the single and mixed bed of chelating agent-XAD-7 resin was discussed.

  • PDF

Interaction of Proline with Cu+ and Cu2+ Ions in the Gas Phase (기체상에서 Cu+ 및 Cu2+ 이온과 proline의 상호작용)

  • Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2009
  • The structures and metal affinities of the binding configurations of $Cu^{+}$ and $Cu^{2+}$ to proline have been investigated using the hybrid three-parameter Density Functional Theory(DFT/B3LYP). We found that the metal-proline bonding and the energy ordering of several conformers were very different in $Cu^{+}$-proline and $Cu^{2+}$-proline. For $Cu^{+}$-proline, the ground state structure was found to have a bidentated coordination in which $Cu^{+}$ was coordinated to the carbonyl oxygen and imino group nitrogen of neutral proline. On the contrary, the ground state structure of $Cu^{2+}$-proline involves chelation between the two oxygens of the carboxylate group in a zwitterionic proline. The metal ion affinity of proline of the most stable $Cu^{+}$-proline complex was calculated as 76.0 kcal/mol at 6-311++G(d,p) level, whereas the $Cu^{2+}$ ion affinity of proline was calculated as 258.5 kcal/mol.

The Removal Characteristics of Caesium Ion by Chemical/Ultrafiltration Combination Process (화학적처리/한외여과막 결합공정에 의한 세슘이온의 제거 특성)

  • 정경환;이근우;김길정;박헌휘
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.70-76
    • /
    • 1994
  • 본 연구는 방사성 폐액의 처리를 목적으로 화학처리와 한외여과막(UF)의 결합공정에 의해서 세슘이온의 제거특성을 조사하였다. 이 공정은 대상핵종과 선택성이 크고 한외여과막에 의해서 분리가 가능한 거대분자를 주입하여 핵종을 결합시키고, 이를 한외여과막에 의해서 분리 제거하는 개념이다. 실험은 흡착제로서 K2Cu3(Fe(CN6)2)를 제조하여 주입하였고 회분식 UF stirred cell를 이용하였으며, 용액의 pH, 세슘이온의 농도 및 K2Cu3(Fe(CN6)2)의 농도에 따라 세슘이온의 제거효율을 측정하였다. 세슘의 제거효율은 pH 및 K2Cu3(Fe(CN6)2)의 몰비에 따라 결정되며, pH가 5∼6에서 높은 제거율을 나타내었고 Cs/K2Cu3(Fe(CN6)2)의 몰비가 1.5 이하에서 90% 이상 제거되었다. K2Cu3(Fe(CN6)2)에 대한 Cs의 결합특성은 Langmuir isotherm형태의 식으로 나타내어 평가하였으며, 이때 세슘이온의 최대 흡착용량은 1.72 mM/mM K2Cu3(Fe(CN6)2) 이었다.

  • PDF

Preparation of a Liquid Membrance Type Ion-Selective Electrode and Its Application to the Potentiometric Titration (액체막형 구리이온 선택성 전극의 제작과 전위차적정에의 응용)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.137-143
    • /
    • 1985
  • Construction of a liquid membrane type of cupric ion selective electrode and its application to the potentiometric titration have been studied. A liquid ion-exchange membrance was prepared by extracting Cu(II) in aqueous solution into 1-(2-pyridylazo)-2-naphthol/nitrobenzene. A Ag/AgCl internal reference electrode was dipped into the aqueous reference solution of $1.00 {\times} 10^{-3}M\;Cu(NO_3)_2$ buffered with HAc-NaAc buffer solution, which was in contact with the nitrobenzene extract. The electrode showed the nernstian response to Cu(II) in the concentration range from $1.00{\times} 10^{-6}$ to $1.00{\times} 10^{-3}$M. The most suitable ion-exchanger concentration in the liquid membrane was $1.00{\times} 10^{-4}$M. The selectivity coefficients of the electrode for the various metal cations were investigated. The electrode was applied to the potentiometric titration of Cu(II) with EDTA.

  • PDF

Interface study of ion irradiated Cu/Ni/Cu(001)/Si thin film by X-ray reflectivity (이온 조사된 Cu/Ni/Cu(001)/Si 자성박막에 있어서 X-ray reflectivity를 이용한 계면 연구)

  • Kim, T.G.;Song, J.H.;Lee, T.H.;Chae, K.H.;Hwang, H.M.;Jeon, G.Y.;Lee, J;Jeong, K.;Whang, C.N.;Lee, J.S.;Lee, K.B.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.184-188
    • /
    • 2002
  • The Cu/Ni/Cu(002)/Si(100) films which have perpendicular magnetic anisotropy were deposited by e-beam evaporation methods. From the reflection high energy electron diffraction pattern, the films were confirmed to be grown epitaxially on silicon. After 2X lots ions/$\textrm{cm}^2$ C+ irradiation, magnetic easy-axis was changed from surface normal to in-plane as shown in the hysteresis loop of magneto-optical Kerr effects. It became manifest from analysis of X-ray reflectivity and grazing incident X-ray diffraction that even though interface between top Cu layer and Ni layer became rougher, the contrast of Cu and Ni's electron density became manifest after ion irradiation. In addition, the strain after deposition of the films was relaxed after ion irradiation. Strain relaxation related with change of magnetic properties and mechanism of intermixed layer's formation was explained by thermo-chemical driving force due to elastic and inelastic collision of ions.

Magnetite Dissolution by Copper Catalyzed Reductive Decontamination (촉매제로 구리이온을 이용한 환원성 제염에 의한 마그네타이트 용해)

  • Kim, Seonbyeong;Park, Sangyoon;Choi, Wangkyu;Won, Huijun;Park, Jungsun;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.421-429
    • /
    • 2018
  • Hydrazine based reductive dissolution applied on magnetite oxide was investigated. Dissolution of Fe(II) and Fe(III) from magnetite takes place either by protonation, surface complexation, or reduction. Solution containing hydrazine and sulfuric acid provides hydrogen to break bonds between Fe and oxygen by protonation and electrons for the reduction of insoluble Fe(III) to soluble Fe(II) in acidic solution of pH 3. In terms of dissolution rate, numerous transition metal ions were examined and Cu(II) ion was found to be the most effective to speed up the dissolution. During the cycle of Cu(I) ions to Cu(II) ions, the released electron promoted the reduction of Fe(III) and Cu(II) ions returned to Cu(I) ion due to the oxidation of hydrazine. In the experimental results, the addition of a very low amount of cupric ion (about 0.5 mM) to the solution increased the dissolution rate about 40% on average and up to 70% for certain specific conditions. It is confirmed that even though the coordination structure of copper ions with hydrazine is not clear, the $Cu(II)/H^+/N_2H_4$ system is acceptable regarding the dissolution performance as a decontamination reagent.

Study on the Effect of (Dodecyldimethylammonio)propanesulfonate Zwitterionic Surfactant on Cu Electrodeposition (구리전해도금에서 양쪽이온성 계면활성제인 (Dodecyldimethylammonio)propanesulfonate의 영향 연구)

  • Shin, Yeong Min;Kim, In Ui;Bang, Daesuk;Cho, Sung Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, the effect of zwitterionic surfactant on Cu electrodeposition was investigated through cyclic voltammetry. With the addition of (dodecyldimethylammonio)propanesulfonate (DDAPS) as a representative zwitterionic surfactant in the electrolyte for Cu electrodeposition, the electrochemical Cu2+ reduction was inhibited on Cu and glassy carbon electrodes. Its inhibition effect was similar to that of cationic surfactant rather than anionic surfactant. Moreover, DDAPS interacted with chloride ion and exhibited the mass transfer-dependent inhibition behavior, which indicates that its inhibition function is associated with the formation of its surface aggregates on anion-covered Cu surface. In addition, adsorbed DDAPS slightly reduced the surface roughness of Cu electrodeposits. These characteristics were similar to those of cationic surfactant, but less obvious. It means the effect of DDAPS on Cu electrodeposition originates from the cationic head group which is shield by anionic head group.