DOI QR코드

DOI QR Code

Study on the Effect of (Dodecyldimethylammonio)propanesulfonate Zwitterionic Surfactant on Cu Electrodeposition

구리전해도금에서 양쪽이온성 계면활성제인 (Dodecyldimethylammonio)propanesulfonate의 영향 연구

  • Shin, Yeong Min (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Kim, In Ui (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Bang, Daesuk (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Cho, Sung Ki (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 신영민 (금오공과대학교 화학소재공학부 화학공학전공) ;
  • 김인의 (금오공과대학교 화학소재공학부 화학공학전공) ;
  • 방대석 (금오공과대학교 화학소재공학부 화학공학전공) ;
  • 조성기 (금오공과대학교 화학소재공학부 화학공학전공)
  • Received : 2021.04.02
  • Accepted : 2021.07.07
  • Published : 2021.08.31

Abstract

In this study, the effect of zwitterionic surfactant on Cu electrodeposition was investigated through cyclic voltammetry. With the addition of (dodecyldimethylammonio)propanesulfonate (DDAPS) as a representative zwitterionic surfactant in the electrolyte for Cu electrodeposition, the electrochemical Cu2+ reduction was inhibited on Cu and glassy carbon electrodes. Its inhibition effect was similar to that of cationic surfactant rather than anionic surfactant. Moreover, DDAPS interacted with chloride ion and exhibited the mass transfer-dependent inhibition behavior, which indicates that its inhibition function is associated with the formation of its surface aggregates on anion-covered Cu surface. In addition, adsorbed DDAPS slightly reduced the surface roughness of Cu electrodeposits. These characteristics were similar to those of cationic surfactant, but less obvious. It means the effect of DDAPS on Cu electrodeposition originates from the cationic head group which is shield by anionic head group.

본 연구에서는, 양쪽이온성 계면활성제가 구리전해도금에 미치는 영향을 cyclic voltammetry를 이용해 분석해보았다. 대표적인 양쪽이온성 계면활성제인(dodecyldimethylammonio)propanesulfonate (DDAPS)를 전해도금액에 첨가할 경우, Cu2+의 환원반응이 억제되는 것을 확인할 수 있었으며, 이러한 억제 효과는 음이온성 계면활성제가 아닌 양이온성 계면활성제와 유사한 특성에 해당한다. 뿐만 아니라, DDAPS는 염소이온과 상호작용을 나타내었고, 억제효과가 물질전달 조건에 따라 변화하는 특성을 가지고 있었으며, 구리도금막의 거칠기 또한 미약하게 감소시켰다. 이러한 특성은, 양이온성 계면활성제의 특성과 유사하나 다소 약화된 모습이었으며, 이를 통해 DDAPS의 작용은 양전하의 친수성 머리에 의해 주도되며, 이 양전하는 음전하 친수성 머리에 의해 shielding 되어 있음을 확인할 수 있었다.

Keywords

Acknowledgement

이 연구는 금오공과대학교 학술연구비로 지원되었음(202001050001).

References

  1. S. K. Kim, M.-C. Kang, H.-C. Koo, S. K. Cho, J. J. Kim and J.-K. Yeo, 'Cu Metallization for Giga Level Devices Using Electrodeposition' J. Korean Electrochem. Soc., 10, 94 (2007). https://doi.org/10.5229/JKES.2007.10.2.094
  2. R. Zhang and P. Somasundaran, 'Advances in adsorption of surfactants and their mixtures at solid/solution interfaces' Adv. Colloid and Interface Sci., 123-126, 213 (2006). https://doi.org/10.1016/j.cis.2006.07.004
  3. J. Kang, C. M. Kim, D. Y. Yu, Y. S. Ham, S. K. Cho and J. J. Kim, 'Octylphenol ethoxylate surfactant as a suppressor in copper electrodeposition' Trans. IMF, 97, 22 (2019). https://doi.org/10.1080/00202967.2019.1551276
  4. Y. E. Jo, D. Y. Yu and S. K. Cho, 'Revealing the inhibition effect of quaternary ammonium cations on Cu electrodeposition' J. Appl. Electrochem., 50, 245 (2020). https://doi.org/10.1007/s10800-019-01381-4
  5. E. Michailova, M. Peykova, D. Stoychev and A. Milchev, 'On the role of surface active agents in the nucleation step of metal electrodeposition on a foreign substrate' J. Electroanal. Chem., 366, 195 (1994). https://doi.org/10.1016/0022-0728(93)03228-H
  6. S. K. Kim, D. Josell and T. P. Moffat, 'Cationic Surfactants for the Control of Overfill Bumps in Cu Superfilling' J. Electrochem. Soc., 153, C826 (2006). https://doi.org/10.1149/1.2354456
  7. C. La Mesa, B. Sesta, M. G. Bonicelli and G. F. Ceccaroni, 'Phase Diagram of the Binary System Water-(Dodecyldimethylammonio)propanesulfonate' Langmuir, 6, 728 (1990). https://doi.org/10.1021/la00094a003
  8. P. Lianos and R. Zana, 'Fluorescence Probe Studies of the Effect of Concentration on the State of Aggregation of Surfactants in Aqueous Solution' J. Colloid Interf. Sci., 84, 100 (1981). https://doi.org/10.1016/0021-9797(81)90263-0
  9. L. M. Grant and W. A. Ducker, 'Effect of Substrate Hydrophobicity on Surface-Aggregate Geometry: Zwitterionic and Nonionic Surfactants' J. Phys. Chem. B, 101, 5337 (1997). https://doi.org/10.1021/jp964014w
  10. A. E. Kaifer and A. J. Bard, 'Micellar effects on the reductive electrochemistry of methylviologen' J. Phys. Chem., 89, 4876 (1985). https://doi.org/10.1021/j100268a044
  11. Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss and D. J. Zurawski, 'Chloride Ion Catalysis of the Copper Deposition Reaction' J. Electrochem. Soc., 142, L87 (1995). https://doi.org/10.1149/1.2044254
  12. C.-j. Cheng, G.-m. Qu, J.-j. Wei, T. Yu and W. Ding, 'Thermodynamics of Micellization of Sulfobetaine Surfactants in Aqueous Solution' J. Surfact. Deterg., 15, 757 (2012). https://doi.org/10.1007/s11743-012-1374-8