• Title/Summary/Keyword: $Co_3O_4/MnO_2$

Search Result 384, Processing Time 0.028 seconds

Effect of Water Addition on Activity of Gold Catalysts Supported on Metal Oxide at Low Temperature CO Oxidation (일산화탄소 저온 산화에서 금속산화물에 담지된 금촉매의 활성에 미치는 수분첨가의 영향)

  • Ahn, Ho-Geun;Kim, Ki-Joong;Chung, Min-Chul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.720-725
    • /
    • 2011
  • Gold catalysts supported on metal-oxides were prepared by co-precipitation using the various metal nitrates and chloroauric acid as precursors, and effect of water addition on the catalytic activity in CO oxidation was investigated. Among the various supported gold catalysts, Au/$Co_{3}O_{4}$ and Au/ZnO catalysts showed the excellent activity for CO oxidation. Water in the reactant gas had a negative effect on the oxidation activity over Au/$Co_{3}O_{4}$ catalysts and a positive effect on that over Au/ZnO, which means the activity depends strongly on the nature of support. It was also confirmed that no significant change in the particle size of gold was observed after reaction both in dry and wet conditions. This fact suggested that the deactivated catalyst due to a carbonate species could be regenerated by water addition in the reactant gas.

Varistor Properties and Aging Behavior of ZnO-V2O5-MnO2-Co3O4-La2O3 Ceramics Modified with Various Additives (Cr, Nb, Dy, Bi)

  • Nahm, Choon-Woo;Lee, Sun-Kwon;Heo, Jae-Seok;Lee, Don-Gyu;Park, Jong-Hyuk;Cho, Han-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.193-198
    • /
    • 2013
  • The effects of additives (Cr, Nb, Dy, and Bi) on microstructure, electrical properties, dielectric characteristics, and aging behavior of $ZnO-V_2O_5-MnO_2-Co_3O_4-La_2O_3$ (ZVMCL) ceramics were systematically investigated. The phase formed in common for all ZVMCL ceramics modified with various additives consisted of ZnO grain as a main phase, and $Zn_3(VO_4)_2$ and $ZnV_2O_4$ as the secondary phases. The sintered density and average grain size were in the range of $5.4-5.54g/cm^3$ and $3.7-5.1{\mu}m$, respectively. The ZVMCL ceramics modified with Cr exhibited the highest breakdown field (6,386 V/cm) and the ZVMCL ceramics modified with Nb exhibited the lowest breakdown field (3,517 V/cm). All additives enhanced the nonlinear coefficient (${\alpha}$), by a small or large margin, in particular, additives such as Bi and Nb noticeably increased the nonlinear coefficient, with ${\alpha}=25.5$ and ${\alpha}=23$, respectively. However, on the whole, all additives did not improve the stability against a DC stress, compared with ZVMCL ceramics.

First Principles Calculations on Electronic Structure and Magnetism of Transition Metal Doped ZnO (전이금속이 도핑된 ZnO의 전자구조와 자성에 대한 제일원리계산)

  • Yun, Sun-Young;Cha, Gi-Beom;Hong, Sun-C.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • In this study we investigate the electronic structure and magnetism of transition metal (TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag ) deped ZnO($TM_{0.25}Zn_{0.75}O$), which are expected to have Curie temperature. Full-potential Linearized Augmented Plane Wave(FLAPW) metod is adopted with exchange-correlation potential expressed as general gradient approximation(GGA). The calculated magnetic moments of ($TM_{0.25}Zn_{0.75}O$) are 0.83, 3.03, 4.03, 3.48, 2.47, 1.56, 0.43, 0.75, 0.01 ${\mu}_B$ for TM = Ti, Cr, Mn, Fe, Co, Ni, Ru, Pd, Ag, respectively. The nearest neighbor O atom to the transition metal is calculated to have a significant magnetic moment of about 0.1${\mu}_B$, ?? 새 strong hybridization between O-p and TM-d bands. As the results, the systems may have larger magnetic moments in total, compared to the corresponding isolated atoms. The 3d TM doped systems exhibit the half-metallic character except Co, wheres the 4d TM doped systems behave like normal metals and low spin polarization at the Fermi levels.

Purification of Waste Acid and Manufacture of Complex Oxide and Mn-Ferrite Powder by Co-Roasting Process (폐산의 정제 기술 및 분무 배소법에 의한 복합 산화물과 Mn-Ferrite 분말의 제조)

  • 유재근;김정석;민병구;성낙일
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.64-75
    • /
    • 1998
  • The purpose of this study is to produce high putity composite powder composed of Fe-oxide, Mn-oxide and Mn-ferrite having superior homogencity in composition and particle size distribution by co-roasting process. Binary component metal (Fe, Mn) chloride solutions were produced by dissolving mill scale and ferro-mangancse alloy in hydrochloric acid. These chloride solutions contained the impurities such as SiO$_{2}$, P, Al, Ca and Na, which were originated from the Fe/Mn source materials. The neutralization and polymeric coagulant method were adoped to refine the hydrochloric liquor. When pH is far below the isoelectric point (pH 2-3), the SiO$_{2}$ was the most effectively reduced element, while other impurities remained unchanged. By increasing pH above 3, most of the impurities could be reduced effectively due to the coprecipitation reaction. The polymeric coagulants such as poly vinyl alcohol, resin amine and ammonium molybdate were found to have no effect on the spray roaster designed by the authors. The produced oxide powders were confirmed to be mixtures of Fe-oxide, Mn-oxide and mn-ferrite. the powders were homogeneously mixed and the particle size increased sleeply with increasing co-roasting temperature.

  • PDF

Synthesis and Luminescent Properties of Aluminate-based Phosphors Doped with Mn4+ Ions (Mn4+ 이온이 도핑된 알루미네이트계 형광체 합성과 발광특성)

  • Park, Jungkyu;Kim, Young Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • $Mn^{4+}$-doped $CaAl_4O_7$ ($CA_2$) and $CaAl_{12}O_{19}$ ($CA_6$) powders were prepared under different conditions, with changes in the amounts of flux, Mn concentration, and mole ratio of $Al_2O_3$ to $CaCO_3$ in the starting mixtures, which affected the structure and the luminescence. $CA_2:Mn^{4+}$ and $CA_6:Mn^{4+}$ had the same excitation and emission spectra but with different intensities. The excitation spectra exhibited broad bands (320 - 470 nm) centered at 395 nm, while red emission bands were observed at 656 nm. The emission intensity of $CA_6:Mn^{4+}$ was nearly twice as high as that of $CA_2:Mn^{4+}$, as the $Mn^{4+}$ ions were located in an octahedral crystal field in the $CA_6$, but not in the $CA_2$.

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method (초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성)

  • Choo, Soyeon;Beom, YunGyeong;Kim, Sungsu;Han, Kyooseung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

The Effects of LaF3 Coating on the Electrochemical Property of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material

  • Yun, Su-Hyun;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2584-2588
    • /
    • 2009
  • The effect of $LaF_3$ coating on the structural and electrochemical properties of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ cathodes was investigated using XRD, SEM, TEM, and a cycler. The coating layer consisted of nano-sized particles attached nonuniformly to the surface of pristine powder. Despite the surface coating treatment, phase difference by $LaF_3$ coating was not detected. The discharge capacities of coated electrodes were a little lower than that of pristine sample at a 1 C rate. However, as the C rate increases, the capacity retention of the coated sample becomes obviously superior to that of the pristine sample. The cyclic performances of the electrodes in the voltage range of 4.8 $\sim$ 3.0 V were also improved by the surface coating. Such enhancement is attributed to the presence of the $LaF_3$ coating layer, which effectively suppressd the reaction between electrodes and electrolytes on the surface of the $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ electrode.

Piezoelectric properties ofPbTi$O_3$ system ceramics for hydrophone (하이드로폰용 PbTi$O_3$계 세라믹스의 압전특)

  • 유주현;홍재일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.44 no.4
    • /
    • pp.479-482
    • /
    • 1995
  • In this study, to improve sintering condition, anisotropic properties ( $k_{t}$/ $k_{p}$) of electromechanical coupling coefficient and piezoelectric constant $d_{h}$ and $g_{h}$, Mn $O_{2}$ impurity was added to the (P $b_{0.76}$C $a_{0.24}$)[( $Co_{1}$2/ $W_{1}$2/)$_{0.04}$ $Ti_{0.96}$] $O_{3}$ ceramics for application to hydrophone devices. Electromechanical coupling coefficients of the specimen with 1.5 [mol%] Mn $O_{2}$ sintered at 1150.deg. C were $k_{t}$=49% and $k_{p}$ = O, which exibited the highest value in piezoelectric anisotropic properties (kt/kp). Without relations with sintering temperature, the highest value of hydrostatic piezoelectric constant $d_{h}$ & $g_{h}$ were shown at the specimen with 1.5 [mol%] Mn $O_{2}$. Accordingly, the best addition amount of Mn $O_{2}$ was 1.5 [mol%] and proper sintering temperature was 1150.deg. C. Hydrostatic piezoelectric constant values of $d_{h}$=64.52[10$^{-12}$ C/N], $g_{h}$=35.92[10$^{-3}$ Vm/N] in the above condition were effectiely extended for hydrophone applications.pplications.ons.

  • PDF

CO oxidation Reaction over copper metal oxide catalysts (구리복합산화물 촉매상에서 일산화탄소의 산화반응)

  • Lee, Hak Beum;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.129-135
    • /
    • 2016
  • CO oxidation was performed with Cu-Mn and Cu-Zn co-precipitated catalysts as differential precipitant, metal ratio and calcination temperature. The effects of differential metal mole ratio and calcination temperature in mixed metal oxide catalyst were investigated with CO oxidation reaction. Physiochemical properties were studied by XRD, $N_2$ sorption and SEM. 2Cu-1Mn with $Na_2CO_3$ catalyst calcined at $270^{\circ}C$ has a large surface area $43m^2/g$ and the best activity for CO oxidation. $Cu_{0.5}Mn_{2.5}O_4$ in XRD peak shows the lower activity than others. The catalytic activity over the catalyst calcined $270^{\circ}C$ displayed the highest conversion, and it was better activity comparing with Pt catalysts CO conversion.