DOI QR코드

DOI QR Code

The Effects of LaF3 Coating on the Electrochemical Property of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material

  • Yun, Su-Hyun (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kim, Seuk-Buom (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Park, Yong-Joon (Department of Advanced Materials Engineering, Kyonggi University)
  • Published : 2009.11.20

Abstract

The effect of $LaF_3$ coating on the structural and electrochemical properties of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ cathodes was investigated using XRD, SEM, TEM, and a cycler. The coating layer consisted of nano-sized particles attached nonuniformly to the surface of pristine powder. Despite the surface coating treatment, phase difference by $LaF_3$ coating was not detected. The discharge capacities of coated electrodes were a little lower than that of pristine sample at a 1 C rate. However, as the C rate increases, the capacity retention of the coated sample becomes obviously superior to that of the pristine sample. The cyclic performances of the electrodes in the voltage range of 4.8 $\sim$ 3.0 V were also improved by the surface coating. Such enhancement is attributed to the presence of the $LaF_3$ coating layer, which effectively suppressd the reaction between electrodes and electrolytes on the surface of the $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ electrode.

Keywords

References

  1. Zhang, S.; Qiu, X.; He, Z.; Weng, D.; Zhu, W. J. Power Sources 2006, 153, 350 https://doi.org/10.1016/j.jpowsour.2005.05.021
  2. Amine, K.; Liu, J.; Belharouak, I.; Kang, S. H.; Bloom, I.; Vissers, D.; Henriksen, G. J. Power Sources 2005, 146, 111 https://doi.org/10.1016/j.jpowsour.2005.03.227
  3. Park, Y. J.; Lee, J. W.; Lee, Y.-G.; Kim, K. M.; Kang, M. G.; Lee, Y. Bull. Korean Chem. Soc. 2007, 28, 2226 https://doi.org/10.5012/bkcs.2007.28.12.2226
  4. Yabuuchi, N.; Makimura, Y.; Ohzuku, T. J. Electrochem. Soc. 2007, 154, A314 https://doi.org/10.1149/1.2455585
  5. Choi, J.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A1714 https://doi.org/10.1149/1.1954927
  6. Wang, L. Q.; Jiao, L. F.; Yuan, H. T.; Guo, J.; Zhao, M.; Li, H. X.; Wang, Y. M. J. Power Sources 2006, 162, 1367 https://doi.org/10.1016/j.jpowsour.2006.08.033
  7. Guo, J.; Jiao, L. F.; Yuan, H. T.; Wang, L. Q.; Li, H. X.; Zhang, M.; Wang, Y. M. Electrochim. Acta 2006, 51, 6275 https://doi.org/10.1016/j.electacta.2006.04.012
  8. Lin, B.; Wen, Z.; Gu, Z.; Xu, X. J. Power Sources 2007, 174, 544 https://doi.org/10.1016/j.jpowsour.2007.06.125
  9. Kim, G.-H.; Kim, M.-H.; Myung, S.-T.; Sun, Y. K. J. Power Sources 2005, 146, 602 https://doi.org/10.1016/j.jpowsour.2005.03.045
  10. Kim, G.-H.; Kim, J.-H.; Myung, S.-T.; Yoon, C. S.; Sun, Y.-K. J. Electrochem. Soc. 2005, 152, A1707 https://doi.org/10.1149/1.1952747
  11. Liao, L.; Wang, X.; Luo, X.; Wang, X.; Gamboa, S.; Sebastian, P. J. J. Power Sources 2006, 160, 657 https://doi.org/10.1016/j.jpowsour.2005.12.095
  12. Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N. Chem. Mater. 2005, 17, 3695 https://doi.org/10.1021/cm050566s
  13. Cho, J.; Kim, Y. J.; Kim, T.-J.; Park, B. Angew. Chem. Int. Ed. Engl. 2001, 40, 3367 https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  14. Cho, J.; Kim, Y. J.; Park, B. Chem. Mater. 2000, 12, 3788 https://doi.org/10.1021/cm000511k
  15. Thackeray, M. M.; Johnson, C. S.; Kim, J. S.; Lauzze, K. C.; Vaughey, J. T.; Dietz, N.; Abraham, D.; Hackney, S. A.; Zeltner, W.; Anderson, M. A. Electrochem. Commun. 2003, 5, 752 https://doi.org/10.1016/S1388-2481(03)00179-6
  16. Myung, S.-T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y. K.; Kumagai, N. J. Phys. Chem. 2007, C111, 4061
  17. Lee, H.; Kim, Y.; Hong, Y. S.; Kim, Y.; Kim, M. G.; Shin, N.-S.; Cho, J. J. Electrochem. Soc. 2006, 153, A781 https://doi.org/10.1149/1.2172567
  18. Ding, Y.; Zhang, P.; Jiang, Y.; Gao, D. Solid State Ionics 2007, 178, 967 https://doi.org/10.1016/j.ssi.2007.04.012
  19. Fey, G. T.; Muralidharan, P.; Lu, C.-Z.; Cho, Y. D. Electrochim. Acta 2006, 51, 4850 https://doi.org/10.1016/j.electacta.2006.01.024
  20. Ryu, J. H.; Kim, S. B.; Park, Y. J. Bull. Korean Chem. Soc. 2009, 30, 657 https://doi.org/10.5012/bkcs.2009.30.3.657
  21. Park, B.-C.; Kim, H.-B.; Myung, S.-T.; Amine, K.; Belharouak, I.; Lee, S.-M.; Sun, Y. K. J. Power Sources 2008, 178, 826 https://doi.org/10.1016/j.jpowsour.2007.08.034
  22. Sun, Y. K.; Cho, S.-W.; Lee, S.-W.; Yoon, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A168 https://doi.org/10.1149/1.2422890
  23. Chen, Z.; Dahn, J. R. Electrochim. Acta 2004, 49, 1079 https://doi.org/10.1016/j.electacta.2003.10.019
  24. Cho, J.; Kim, T.-G.; Kim, C.; Lee, J.-G.; Kim, Y.-W.; Park, B. J. Power Sources 2005, 146, 58 https://doi.org/10.1016/j.jpowsour.2005.03.118
  25. Choi, J.; Manthiram, A. J. Electrochem. Soc. 2005, 152, A1714 https://doi.org/10.1149/1.1954927

Cited by

  1. Thin Film vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1483
  2. Performance Improvements of Cobalt Oxide Cathodes for Rechargeable Lithium Batteries vol.5, pp.2, 2018, https://doi.org/10.1002/cben.201700008
  3. Surface Characterization of ZrO2 Coated LiCoO2 Thin Film During Storage vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2799
  4. Effect of Calcination Temperature of Size Controlled Microstructure of LiNi0.8Co0.15Al0.05O2 Cathode for Rechargeable Lithium Battery vol.35, pp.2, 2009, https://doi.org/10.5012/bkcs.2014.35.2.357
  5. Surface and Interface Engineering of Electrode Materials for Lithium‐Ion Batteries vol.27, pp.3, 2009, https://doi.org/10.1002/adma.201402962