DOI QR코드

DOI QR Code

Varistor Properties and Aging Behavior of ZnO-V2O5-MnO2-Co3O4-La2O3 Ceramics Modified with Various Additives (Cr, Nb, Dy, Bi)

  • Nahm, Choon-Woo (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University) ;
  • Lee, Sun-Kwon (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University) ;
  • Heo, Jae-Seok (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University) ;
  • Lee, Don-Gyu (Semiconductor Ceramics Laboratory, Department of Electrical Engineering, Dongeui University) ;
  • Park, Jong-Hyuk (Korea Electrotechnology Research Institute) ;
  • Cho, Han-Goo (Korea Electrotechnology Research Institute)
  • Received : 2013.03.15
  • Accepted : 2013.05.16
  • Published : 2013.08.25

Abstract

The effects of additives (Cr, Nb, Dy, and Bi) on microstructure, electrical properties, dielectric characteristics, and aging behavior of $ZnO-V_2O_5-MnO_2-Co_3O_4-La_2O_3$ (ZVMCL) ceramics were systematically investigated. The phase formed in common for all ZVMCL ceramics modified with various additives consisted of ZnO grain as a main phase, and $Zn_3(VO_4)_2$ and $ZnV_2O_4$ as the secondary phases. The sintered density and average grain size were in the range of $5.4-5.54g/cm^3$ and $3.7-5.1{\mu}m$, respectively. The ZVMCL ceramics modified with Cr exhibited the highest breakdown field (6,386 V/cm) and the ZVMCL ceramics modified with Nb exhibited the lowest breakdown field (3,517 V/cm). All additives enhanced the nonlinear coefficient (${\alpha}$), by a small or large margin, in particular, additives such as Bi and Nb noticeably increased the nonlinear coefficient, with ${\alpha}=25.5$ and ${\alpha}=23$, respectively. However, on the whole, all additives did not improve the stability against a DC stress, compared with ZVMCL ceramics.

Keywords

References

  1. C.-W. Nahm, Mater. Lett. 62, 2900 (2008) [DOI: http://dx.doi.org/10.1016/j.matlet.2008.01.068].
  2. C.-W. Nahm, Mater. Lett. 59, 2097 (2005) [DOI: http://dx.doi.org/10.1016/j.matlet.2005.01.080].
  3. C.-W. Nahm, J. Mater. Sci.: Mater. Electron. 20, 718 (2009) [DOI:http://dx.doi.org/10.1007/s10854-008-9793-z].
  4. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull. 65, 639(1986).
  5. T. K. Gupta, Application of zinc oxide varistor, J. Am. Ceram. Soc. 73, 1817 (1990) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x].
  6. C.-W. Nahm, C-H Park, and H-S Yoon, J. Mater. Sci. Lett. 19, 725 (2000) [DOI: http://dx.doi.org/10.1023/A:1006739421559].
  7. C.-W. Nahm, Mater. Lett. 59, 2097 (2005) [DOI: http://dx.doi.org/10.1016/j.matlet.2005.01.080].
  8. J.-K. Tsai and T.-B. Wu, J. Appl. Phys. 76, 4817 (1994) [DOI:http://dx.doi.org/10.1063/1.357254].
  9. J.-K. Tsai and T.-B. Wu, Mater. Lett. 26, 199 (1996) [DOI: http://dx.doi.org/10.1016/0167-577X(95)00217-0].
  10. C. T. Kuo, C. S. Chen, and I.-N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998) [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02717.x].
  11. H.-H. Hng and K. M. Knowles, J. Europ. Ceram. Soc. 19, 721 (1999) [DOI: http://dx.doi.org/10.1016/S0955-2219(98)00303-3].
  12. H.-H. Hng and L. Halim, Mater. Lett. 57, 1411 (2003) [DOI:http://dx.doi.org/10.1016/S0167-577X(02)00999-0].
  13. H.-H. Hng and P. L. Chan, Ceram Int. 30, 1647 (2004) [DOI:http://dx.doi.org/10.1016/j.ceramint.2003.12.162].
  14. C.-W. Nahm, Solid State Commun. 143, 453 (2007) [DOI: http://dx.doi.org/10.1016/j.ssc.2007.06.027].
  15. C.-W. Nahm, J. Mater. Sci.: Mater. Electron. 19, 1023 (2008) [DOI:http://dx.doi.org/10.1007/s10854-007-9542-8].
  16. C.-W. Nahm, Mater. Sci. Eng. B. 150, 32 (2008) [DOI: http://dx.doi.org/10.1016/j.mseb.2008.02.018].
  17. C.-W. Nahm, Ceram Int. 35, 541 (2009) [DOI: http://dx.doi.org/10.1016/j.ceramint.2008.01.010].
  18. C.-W. Nahm, Ceram Int. 35, 3435 (2009) [DOI: http://dx.doi.org/10.1016/j.ceramint.2009.06.004].
  19. J. C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972) [DOI:http://dx.doi.org/10.1111/j.1151-2916.1972.tb11224.x].
  20. J. Fan and R. Freer, J. Am. Ceram. Soc. 77, 2663 (1994) [DOI:http://dx.doi.org/10.1111/j.1151-2916.1994.tb04659.x].
  21. T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1985) [DOI:http://dx.doi.org/10.1007/BF01113755].

Cited by

  1. Varistor Properties and Aging Behavior of V/Mn/Co/ La/Dy Co-doped Zinc Oxide Ceramics Modified with Various Additives vol.15, pp.5, 2014, https://doi.org/10.4313/TEEM.2014.15.5.284
  2. Electro-thermal modeling of surge arrester based on adaptive power loss estimation using finite element method vol.26, pp.6, 2016, https://doi.org/10.1002/etep.2148
  3. Thermal balance diagram modelling of surge arrester for thermal stability analysis considering ZnO varistor degradation effect vol.10, pp.7, 2016, https://doi.org/10.1049/iet-gtd.2015.0728
  4. Heat transfer analysis of metal oxide surge arrester under power frequency applied voltage vol.93, 2015, https://doi.org/10.1016/j.energy.2015.09.031