• Title/Summary/Keyword: $CoSe_2$

Search Result 1,154, Processing Time 0.035 seconds

Measurement of Gain Coefficient and Saturation Power of CW Waveguide CO_2$$ Laser (연속발진 도파형 이산화탄소 레이저의 이득계수 및 포화출력 측정)

  • 이승걸;김현태;박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1990
  • Two ZnSe loss plates were installed in the resonator of waveguide CO2 laser which consisted of Pyrex capillary tube in order to change the internal loss. By rotating the loss plates, the output variations with the internalloss was measured on various discharge conditions. The variations could be explained by the Rigrod theory. and the saturation power and the unsaturated gain coefficient were determined by fitting of the experimental results. It was found that the saturation power increased while the unsaturated gain coefficient reduced as the discharge current or the gas flow rate increased.reased.

  • PDF

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

Torque ripple reduction for High power Induction Motor driven by DTC (DTC로 구동되는 대용량 유도전동기의 토크리플 저감법)

  • Park, Young-Min;Yun, Jae-Hak;Han, Gi-Jun;Choi, Se-Kyung;Jung, Myung-Kil;Lee, Se-Hyun;Lee, Kyo-Beum;Song, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.369-371
    • /
    • 1999
  • A torque ripple minimization technique is proposed for high power induction motors driven by 3-level inverters with switching frequency of inverter switching elements limited around 500Hz level. It is noted that conventional DTC algorithms with torque ripple minimization scheme are devised for applications with relatively high switching frequency above 2-3kHz. A new DTC algorithm, especially for low switching frequency inverter system, illustrates relatively reduced torque ripple characteristics all over the operating speed region. Simulation results show effectiveness of the proposed control algorithm, and associated experimental works will be presented in the final paper.

  • PDF

Effects of Se flux on CIGS thin film solar cell (Se 증기압이 CIGS 박막 태양전지에 미치는 영향에 관한 연구)

  • Kim, Daesung;Kim, Chaewoong;Kim, Taesung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.71.2-71.2
    • /
    • 2010
  • CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성으로 고효율의 태양전지 제조가 가능하여 화합물 태양전지용 광흡수층으로서 매우 이상적이다. 또한 In 일부를 Ga으로 치환하여 밴드갭을 조절할 수 있는 장점이 있다. 미국 NREL에서는 Co-evaporation 방법을 이용해 20%의 에너지 변환 효율을 달성하였다고 보고된바가 있다. 본 연구에서는 미국의 NREL과 같은 3 stage 방식을 이용하여 광흡수층을 제조하고자 한다. 본 실험에서는 Se 증기압을 각각 $200^{\circ}C$, $230^{\circ}C$, $240^{\circ}C$, $245^{\circ}C$로 달리 하며 실험을 실시하였다. 이때 1st stage의 시간은 15분으로 고정하였으며 기판온도는 약 $250^{\circ}C$로 고정 하였다. 2nd stage는 실시간 온도 감지 장치를 이용하여 Cu와 In+Ga의 조성비가 1:1이 되는 시간을 기준으로 Cu의 조성을 30%더 높게 조절하였으며 기판 온도는 약 $520^{\circ}C$로 고정 후 실험을 실시하였다. 3rd stage의 경우 Cu poor 조성으로 조절하기 위해 모든 조건을 10분으로 고정 후 실험을 실시하였다. 각각의 Se 증기압에 따른 물리적, 전기적 특성을 알아보기 위해 FE-SEM, EDS, XRD 분석을 실시하였다. 본 연구에서 기판은 Na이 첨가되어있는 soda-lime glass를 사용 하였으며 후면 전극으로 약60nm 두께의 Mo를 DC Sputtering 방법을 이용해 증착 하였다.

  • PDF

Phase Change Characteristics of Sb-Based Phase Change Materials

  • Park, Sung-Jin;Kim, In-Soo;Kim, Sang-Kyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.61-64
    • /
    • 2008
  • Electrical optical switching and structural transformation of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ were studied to investigate the phase change characteristics for PRAM application. Sb-based materials were deposited by a RF magnetron co-sputtering system and the phase change characteristics were analyzed using an X-ray diffractometer (XRD), a static tester and a four-point probe. Doping Ge, Se or Si atoms reinforced the amorphous stability of the Sb-based materials, which affected the switching characteristics. The crystallization temperature of the Sb-based materials increased as the concentration of the Ge, Se or Si increased. The minimum time of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ for crystallization was 120, 50 and 90 ns at 12 mW, respectively. $Sb_{65}Se_{35}$ was crystallized at $170^{\circ}C$. In addition, the difference in the sheet resistances between amorphous and crystalline states was higher than $10^4{\Omega}/{\gamma}$.

Synthesis and Structure-Activity Relationships of Novel Compounds for the Inhibition of TNF-$\alpha$ Production

  • Park, Joon-Seok;Baik, Kyong-Up;Son, Ho-Jung;Lee, Jae-Ho;Lee, Se-Jong;Choi, Jae-Youl;Park, Ji-Soo;Yoo, Eun-Sook;Byun, Young-Seok;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.332-337
    • /
    • 2000
  • This study describes the synthesis, in vitro evaluation and molecular modeling study of novel compounds for the inhibition of TNF-$\alpha$production, Among these compounds, 2-[3-(cyclopentyloxy)-4-methoxyphenyl]-1-isoindolinone (9) was selected as a lead compound and its pyridine derivative 10 was more potent in activity and safer than rolipram.

  • PDF

The $^4A_2(^4F)\rightarrow^4T_1(^4F)$ Transitions of a $Co^{2+}$ Ion in Inse Single Crystals (Inse 달결정에서 $Co^{2+}$ 이온의 $^4A_2(^4F)\rightarrow^4T_1(^4F)$ 전이특성)

  • 박병서
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.2
    • /
    • pp.119-123
    • /
    • 1995
  • Bridgman 방법으로 성장한 InSe: Co 단결정의 근적외 영역에서의 광흡수 특성을 상온에서 조사하였다. 1350, 1530, 1710nm 파장영역에서 Td 대칭을 갖는 Co2+ 이온의 4A2(4F)$\longrightarrow$4T1(4F)전이에 대응되는 3개의 흡수 peak를 관측하였다. 이 미세구조는 스핀-궤도 결합효과에 의하여 분리된 Co2+ 이온의 4T1(4F) 준위의 $\Gamma$6, $\Gamma$8, $\Gamma$7+$\Gamma$8 준위와 바닥상태 4A2(4F)의 $\Gamma$8 준위 사이의 전자전이에 기인하며, 결정장이론에 의하여 잘 설명되었다.

  • PDF

Analysis of Natural Ventilation Effect of Seoul Metropolitan Subway by Monitoring Indoor $CO_2$ Concentrations (수도권 전동차 객실 $CO_2$농도관측을 통한 자연환기효과 해석)

  • Kwon, Soon-Bark;Cho, Young-Min;Park, Duck-Shin;Park, Eun-Young;Kim, Se-Young;Jung, Mi-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.965-968
    • /
    • 2007
  • Two major parameters, i.e. carbon dioxide ($CO_2$) and particulate matters smaller than $10{\mu}m\;(PM_{10})$, were selected as the index pollutants in managing indoor air quality. The former pollutant, $CO_2$, is the index that shows the ventilation status and is exhaled by passengers when they breathe in train or subway. It is generally known that high $CO_2$ concentration in the vehicle may be decreased by insufficient air-tightening vehicle bodies and the air is ventilated when vehicles stop at the station and doors open. However, there is no established proof or quantitatively identified data on how much the $CO_2$ concentration is reduced when ventilation is done while doors are opened. In this study, $CO_2$ concentrations were measured in 6 lines of Korail and one line of Seoul Metro subway linesand a theoretical approach was takento predict the changing trend of $CO_2$ concentrations during the operation of vehicle by using $CO_2$ dilution factor through natural ventilation. As a result, the change could be quantified and it was found that app. 35% of indoor $CO_2$ was removed through natural ventilation.

  • PDF