• 제목/요약/키워드: $CoAl_2O_4$

Search Result 636, Processing Time 0.029 seconds

Effect of Processing Conditions for Atmospheric Plasma Spraying on Characteristics of Ceramic Coatings (상압 플라즈마 용사의 공정조건에 따른 세라믹 피막의 특성)

  • 주원태;최병룡;홍상희
    • Journal of Surface Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.192-202
    • /
    • 1993
  • The characteristics of the high-performance ceramic coatings fabricated on the optimum processings con-ditions for the atmospheric plasma spraying are evaluated by various material tests and analyses. The opti-mum processing parameters for the plasma spraying are determined by using the two-level orthogonal arrays of fractional factorial testing method as a statistical approach. Material tests for the coating specimens are carried out to evaluate microstructure, hardness, adhesion strength, and deposition efficiency. The properties of Al2O3-13%TiO2 coating are discussed with regard to the effective processings parameters. The decarburization effects of WC-12%Co coating is examined by XRD analysis in terms of the arc power and the secondary gas species. The hardness of Al2O2-13%TiO2 coating is increased with the arc power and shows the maximum value at around 40 lpm of Ar gas flowrate, which appears to be the most critical parame-ter on the deposition efficiency. For reducing the decarburization of WC-12%Co coating, the injection of inert He gas instead of reactive H2 gas as a secondary gas is more effective than the dropping of arc power to lessen the plasma enthalpy.

  • PDF

Removal of Cobalt Ion by adsorbing Colloidal Flotation (흡착 교질 포말부선법에 의한 Cobalt Ion의 제거)

  • 정인하;이정원
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.3-10
    • /
    • 1998
  • Simulated waste liquid containing 50 ppm cobalt ion was treated by adsorbing colloidal flotation using Fe(III) or Al(IlI) as flocclant and a sodium lamyl sulfate as a collector. Parameters such as pH, surfactant concentration, Fe(III) or Al(III) concentration, gas flow rate, etc., W앙e considered. The flotation with Fe(III) showed 99.8% removal efficiency of cohalt on the conditions of initial cobalt ion concentration 50 ppm, pH 9.5, gas flow rate 70 ml/min, and flotation time 30 min. When the waste solution, was treated with 35% $H_2O_2$ prior to adsorbing colloidal flotation, the optimal pH for removing cobalt shifted m to weak alkaline range and flotation could be applied in wider range of pH as compared to non-use of $H_2O_2$. Additional use of 20 ppm Al(III) after precipitation of 50 ppm Co(II) with 50 ppm Fe(III) made the optimal pH range for preferable flotation w wider. Foreign ions such as, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $Ca^{2+}$ were adopted and their effects were observed. Of which sulfate ion was f found to be detrimental to removal of cob퍼t ion by flotation. Coprecipitation of Co ion with Fe(III) and Al(III) resulted in b better removal efficiency of cobalt IOn 피 the presence of sulfate ion.

  • PDF

Zeolitification Characteristics of Coal Fly Ash by Amount of Na2CO3 Using the Fusion/Hydrothermal Method (용융/수열합성법으로부터 Na2CO3 첨가량에 따른 석탄비산재의 제올라이트화 특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.553-559
    • /
    • 2019
  • In this study, zeolitic materials at $Na_2CO_3/CFA$ ratio of 0.6 - 1.8 were synthesized from coal fly ash from a thermal power plant using a fusion/hydrothermal method. The zeolitic materials were found to have cubic crystals structure and X-ray diffraction (XRD) peaks of Na-A zeolite by XRD and SEM analysis. When the zeolitic materials were synthesized from the coal fly ash, the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratios of 0.9-1.8 had the same location as the XRD peaks of commercial Na-A zeolite. The XRD peaks of the Na-A zeolite ($Na_{12}Al_{12}Si_{12}O_{48}27.4H_2O$) were confirmed in the $2{\theta}$ in the range of 7.18-34.18. However, it was also confirmed that peaks of $CaCO_3$, an impurity inhibiting synthesis of Na-A zeolite from CaO and $Na_2CO_3$ in the coal fly ash, occurred in the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratio of 1.5-1.8. The crystallinities of the zeolitic materials tended to increase gradually within the $Na_2CO_3/CFA$ ratio range of 0.6-1.8.

Effect of Degraded Al-doped ZnO Thin Films on Performance Deterioration of CIGS Solar Cell (고온 및 고온고습 환경 내에서 ZnO:Al 투명전극의 열화가 CIGS 박막형 태양전지의 성능 저하에 미치는 영향)

  • Kim, Do-Wan;Lee, Dong-Won;Lee, Hee-Soo;Kim, Seung-Tae;Park, Chi-Hong;Kim, Yong-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.328-333
    • /
    • 2011
  • The influence of Al-doped ZnO (AZO) thin films degraded under high temperature and damp heat on the performance deterioration of Cu(In,Ga)$Se_2$ (CIGS) solar cells was investigated. CIGS solar cells with AZO/CdS/CIGS/Mo structure were prepared on glass substrate and exposed to high temperature ($85^{\circ}C$) and damp heat ($85^{\circ}C$/85% RH) for 1000 h. As-prepared CIGS solar cells had 64.91% in fill factor (FF) and 12.04% in conversion efficiency. After exposed to high temperature, CIGS solar cell had 59.14% in FF and 9.78% in efficiency, while after exposed to damp heat, it had 54.00% in FF and 8.78% in efficiency. AZO thin films in the deteriorated CIGS solar cells showed increases in resistivity up to 3.1 times and 4.4 times compared to their initial resistivity after 1000 h of high temperature and damp heat exposure, respectively. These results can be explained by the decreases in carrier concentration and mobility due to diffusion or adsorption of oxygen and moisture in AZO thin films. It can be inferred that decreases in FF and conversion efficiency were caused by an increase in series resistance, which resulted from an increase in resistivity of AZO thin films degraded under high temperature and damp heat.

The use of Thermodynamics and Phase Equilibria for Prediction of the Behavior of High Temperature Corrosion of Alloy 617 in Impure Helium Environment

  • Kim, Dong-Jin;Lee, Gyeong-Geun;Kim, Sung-Woo;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.164-170
    • /
    • 2010
  • Thermodynamic consideration was performed for Alloy 617 exposed to an impure helium ($H_2$ 20pa, $H_2O$ 0.5pa, $CH_4$ 2pa and CO 5pa) at $950^{\circ}C$. Oxidation power was decreased in the order Al > Ti > Si > Cr > Mn. Decarburization and carburization reactions were available leading to carbon activity decrease and increase, respectively, depending on carbon and Cr activities. The thermodynamic prediction was compared with the experimental results obtained in similar conditions (($H_2$ 20pa, $H_2O$ 0.05pa, $CH_4$ 5pa and CO 2pa) and $950^{\circ}C$) by others for Alloy 617. The driving force for oxidation of Al, Ti and Si is very large to be oxidized at a given impure helium and the environment is actually carburizing towards the structural alloy, which is consistent with this work.

Effect of K2CO3 Loading on the Adsorption Performance of Inorganic Adsorbent for H2S Removal (K2CO3 첨가에 따른 H2S 제거용 무기계 흡착제의 흡착성능 영향에 관한 연구)

  • Jang, Kil Nam;Song, Young Sang;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.23 no.3
    • /
    • pp.286-293
    • /
    • 2017
  • The goal of this paper was to improve the performance of the adsorbent to remove $H_2S$. Pellet type adsorbents were prepared by using four kinds of materials ($Fe_2O_3$, $Ca(OH)_2$, Activated carbon, $Al(OH)_2)$ for use as a basic carrier. As the results of $H_2S$ adsorption tests, $Fe_2O_3$ and Activated Carbon improved the adsorption performance of $H_2S$ by 1.5 ~ 2 times, and $Ca(OH)_2$ and $Al(OH)_2$ showed no effect on $H_2S$ adsorption performance. Four basic materials were as carriers, and 5 wt% of KI, KOH and $K_2CO_3$ were added on the carriers, respectively. As the results of $H_2S$ adsorption tests, adsorbent containing $K_2CO_3$ showed the best performance. As a result of $H_2S$ adsorption test with varying $K_2CO_3$ content from 5 to 30 wt%, it was confirmed that adsorption performance was increased up to 20 wt% of $K_2CO_3$ and adsorption performance decreased to 30 wt%. The $H_2S$ adsorption performance was modeled by using Thomas model with varying $K_2CO_3$ contents and the results were used for the adsorption tower design. It was shown that the experimental values and the simulated values were in good agreement with the contents range of $K_2CO_3$ up to 20 wt%. Based on these results, it is expected that not only the adsorption performance of $H_2S$ adsorbent is improved but also life time of the adsorbent is increased.

Study on the Manufacturing Technology of Mural Tomb in Goa-dong of Daegaya Period (대가야 고아동 고분벽화 제작기술에 관한 연구)

  • Lee, Hwa Soo;Lee, Han Hyeong;Lee, Kyeong Min;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.457-466
    • /
    • 2014
  • Rigorous analysis was performed to identify the structure and materials of the murals to study techniques used on mural tombs of ancient Daegaya era(6th century). The murals were painted by applying mortar on the walls and the ceiling after building a stone chamber and creating ground layers on mortar layers. Mud was applied on most of the mortar layers on four sides of the walls except the ceiling. Sand was not used in mortar but was made of materials with pure calcium substances. In addition, shells in irregular sizes with incomplete calcination were mixed; and the mortar's white powder was inferred as lime obtained by calcination of oyster shells. Kaolinite($Al_2Si_2O_5(OH)_4$) was used in the ground layer, Cinnabar(HgS) was used for red pigment, Malachite($Cu_2CO_3(OH)_2$) for green and Lead white($PbCO_3{\cdot}Pb(OH)_2$) for white. Mud plaster was applied on the mortar and was composed thinly and densely using clayey of particle size smaller than that of medium sand. It was assumed that the finishing was for repair after long time had passed since the mortar layer came off. Using lime made with oyster shells as mortar is unprecedented in ancient Korean mural tombs and its durability was very poor, suggesting that Gaya's mortar production technique was relatively behind compared to that of Koguryo's in the same era.

Change of Optical Properties in Zinc Oxide-Based Glasses including Metal Oxides for Transparent Dielectric

  • Seo, Byung-Hwa;Kim, Hyung-Sun;Suh, Dong-Hack
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.533-537
    • /
    • 2009
  • This paper presents a new method for the improvement of color temperature without the change of the driving scheme using transparent dielectric layers with various metal oxides (CeO$_2$, Co$_3$O$_4$, CuO, Fe$_2$O$_3$, MnO$_2$, NiO) in plasma display panels (PDP). In this study, we fabricated ZnO-B$_2$O$_3$-SiO$_2$-Al$_2$O$_3$ glasse with various metal oxides and examined the optical properties of these glasses. As the metal oxides were added to the glasses, the visible transmittances of the dielectric layers decreased and the transmittances in special wavelength regions were reduced at different rates. The change of the transmittance in each wavelength range induced the variation of the visible emission spectra and the change of the color temperature in the PDP. The addition of Co$_3$O$_4$ and CuO slightly decreased the intensity of the blue light, but the intensities of the green and the red light were significantly decreased. Therefore, the color temperature can be improved from 6087K to 7378K and 7057K, respectively.

TiN Surface-Alloying of Ti-6Al-4V Alloy by CO2 Laser (CO2 레이저에 의한 Ti-6Al-4V 합금(合金)의 TiN 표면합금화(表面合金化))

  • Park, S.D.;Lee, O.Y.;Song, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.32-43
    • /
    • 1995
  • Ti-6Al-4V alloy are widely used in chemical and aircraft industries for their good corrosion resistance and high strength to weight ratio. Surface alloying of Ti alloy by $CO_2$ laser is able to produce few hundred micrometers thick TiN surface-alloyed layer with high hardness on the substrate very simplely by injecting reaction gas($N_2$) into a laser-generated melt pool and adjust the hardness to the specific requirements of the individual application by changing of laser processing parameters. This research has been investigated the effect of such parameters on TiN surface-alloying of Ti-6Al-4V alloy by $CO_2$ laser. The maximum hardness of TiN surface-alloyed zone waw obtained by injecting 100% $N_2$ gas and it was decreased as the amount of $N_2$ gas in Ar and $N_2$ gas mixture was decreased. As scanning speed was increased, the hardness and depth of TiN surface-alloyed zone was decreased at constant laser power. The surface hardness after double scanning laser treatment is higher than that of single scanning. At constant laser power, the surface roughness is increased after the surface alloying if laser scanning speed is decreased.

  • PDF

A Study on the Reduction of Iron Oxide from Slag in the EAF Process (전기로 공정에서 슬래그 중 산화철의 환원 회수에 관한 연구)

  • Kim, Young-Hwan;Yoo, Jung-Min
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.54-59
    • /
    • 2016
  • EAF processed slag which contains about 20 ~ 35 weight percent FetO is poured to slag pot and cooled. If we recover Fe from molten slag by the reduction, we will improve steel yield rate and reduce slag quantity poured from the furnace. Usually, carbon is used as a reductant and slag foaming agent in the EAF process. In this experiment, after melt the metal in induction furnace and then add slag with carbon and Al dross powder as a reductant, we investigated the reduction of FetO from slag and change of Phophorus content. As the result, when we use Al dross as a reductant, recovery rate is two times more than carbon. Phosphorus pick up is less than 50ppm with reduction of EAF slag.